找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: breath-focus
21#
發(fā)表于 2025-3-25 06:17:12 | 只看該作者
M?rkte der langfristigen Fremdfinanzierungnd flows and related notions will appear again and again throughout the book. The once standard reference, . by Ford and Fulkerson [FoFu62], is still worth reading; an extensive, more recent treatment is provided in [AhMO93].
22#
發(fā)表于 2025-3-25 07:46:31 | 只看該作者
https://doi.org/10.1007/978-3-658-13425-9g groups. Finally, we turn to map colorings: we shall prove Heawood’s five color theorem and report on the famous four color theorem. Our discussion barely scratches the surface of the vast area; for a detailed study of coloring problems we refer the reader to the monograph [JeTo95].
23#
發(fā)表于 2025-3-25 13:27:27 | 只看該作者
24#
發(fā)表于 2025-3-25 18:45:34 | 只看該作者
25#
發(fā)表于 2025-3-25 20:29:58 | 只看該作者
26#
發(fā)表于 2025-3-26 04:11:44 | 只看該作者
27#
發(fā)表于 2025-3-26 06:12:29 | 只看該作者
28#
發(fā)表于 2025-3-26 08:44:14 | 只看該作者
https://doi.org/10.1007/978-3-663-08732-8s. This suggests trying to apply this algorithm also to problems from graph theory. Indeed, the most important network optimization problems may be formulated in terms of linear programs; this holds, for instance, for the determination of shortest paths, maximal flows, optimal flows, and optimal circulations.
29#
發(fā)表于 2025-3-26 15:31:09 | 只看該作者
https://doi.org/10.1007/978-3-322-92306-6oduced in Example 10.1.4, so that the methods discussed in Chapter 10 apply. Nevertheless, we will give a further algorithm for the bipartite case, the ., which is one of the best known and most important combinatorial algorithms.
30#
發(fā)表于 2025-3-26 19:48:34 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 01:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
宁都县| 清涧县| 枝江市| 武乡县| 佛冈县| 仪陇县| 松滋市| 永修县| 辽源市| 贵州省| 雷州市| 祁门县| 富平县| 松阳县| 静宁县| 峡江县| 西宁市| 凤城市| 光山县| 卓尼县| 五台县| 高青县| 黔西县| 行唐县| 南昌县| 安仁县| 武安市| 资兴市| 西平县| 宣恩县| 灵台县| 萨嘎县| 满城县| 铜山县| 商河县| 于都县| 包头市| 石柱| 娄底市| 德兴市| 邹平县|