找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: 搭話
11#
發(fā)表于 2025-3-23 10:35:04 | 只看該作者
Twisted Duality, Cycle Family Graphs, and Embedded Graph Equivalence,ality? (2) How is a hierarchy of graph equivalences captured by a hierarchy of twisted dualities? We construct cycle family graphs and show that they fully characterise all twisted duals with a given (abstract) medial graph, and use this to answer Question 1. For Question 2, we give a hierarchy of g
12#
發(fā)表于 2025-3-23 15:12:34 | 只看該作者
Interactions with Graph Polynomials,n with the topological transition polynomial of Ellis-Monaghan and Moffatt (Trans. Amer. Math. Soc., ., 1529–1569, 2012), which interacts with twisted duality in a particularly natural way, leading to a generalised duality identity, and a three term contraction-deletion relation. The topological tra
13#
發(fā)表于 2025-3-23 21:25:40 | 只看該作者
14#
發(fā)表于 2025-3-23 23:53:41 | 只看該作者
15#
發(fā)表于 2025-3-24 03:30:48 | 只看該作者
https://doi.org/10.1007/978-3-658-07627-6ving that Petriality and geometric duality result from local operations on each edge of an embedded graph. These local operations applied to subsets of the edge set result in partial Petrality and partial duality. We provide constructions for partial duals and partial Petrials in various realisation
16#
發(fā)表于 2025-3-24 08:55:26 | 只看該作者
17#
發(fā)表于 2025-3-24 13:05:29 | 只看該作者
https://doi.org/10.1007/978-3-658-09911-4n with the topological transition polynomial of Ellis-Monaghan and Moffatt (Trans. Amer. Math. Soc., ., 1529–1569, 2012), which interacts with twisted duality in a particularly natural way, leading to a generalised duality identity, and a three term contraction-deletion relation. The topological tra
18#
發(fā)表于 2025-3-24 16:38:53 | 只看該作者
19#
發(fā)表于 2025-3-24 19:00:42 | 只看該作者
https://doi.org/10.1007/978-3-642-34775-7ned rotation systems. It covers Petrie duals, geometric duals, medial graphs and Tait graphs; and the relations among them. These definitions and relations motivate much of the work presented later in the monograph.
20#
發(fā)表于 2025-3-25 02:13:54 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-13 10:58
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
邵阳市| 合川市| 基隆市| 穆棱市| 古蔺县| 麟游县| 盈江县| 灌阳县| 清丰县| 商南县| 揭东县| 开化县| 山丹县| 汝城县| 泰和县| 类乌齐县| 罗城| 玉林市| 广宗县| 安吉县| 门源| 五华县| 通榆县| 塔城市| 东兰县| 河间市| 定日县| 台前县| 钟山县| 合川市| 屏东市| 乐平市| 咸阳市| 龙泉市| 来宾市| 大新县| 德阳市| 叙永县| 罗田县| 交城县| 依兰县|