找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 搭話
11#
發(fā)表于 2025-3-23 10:35:04 | 只看該作者
Twisted Duality, Cycle Family Graphs, and Embedded Graph Equivalence,ality? (2) How is a hierarchy of graph equivalences captured by a hierarchy of twisted dualities? We construct cycle family graphs and show that they fully characterise all twisted duals with a given (abstract) medial graph, and use this to answer Question 1. For Question 2, we give a hierarchy of g
12#
發(fā)表于 2025-3-23 15:12:34 | 只看該作者
Interactions with Graph Polynomials,n with the topological transition polynomial of Ellis-Monaghan and Moffatt (Trans. Amer. Math. Soc., ., 1529–1569, 2012), which interacts with twisted duality in a particularly natural way, leading to a generalised duality identity, and a three term contraction-deletion relation. The topological tra
13#
發(fā)表于 2025-3-23 21:25:40 | 只看該作者
14#
發(fā)表于 2025-3-23 23:53:41 | 只看該作者
15#
發(fā)表于 2025-3-24 03:30:48 | 只看該作者
https://doi.org/10.1007/978-3-658-07627-6ving that Petriality and geometric duality result from local operations on each edge of an embedded graph. These local operations applied to subsets of the edge set result in partial Petrality and partial duality. We provide constructions for partial duals and partial Petrials in various realisation
16#
發(fā)表于 2025-3-24 08:55:26 | 只看該作者
17#
發(fā)表于 2025-3-24 13:05:29 | 只看該作者
https://doi.org/10.1007/978-3-658-09911-4n with the topological transition polynomial of Ellis-Monaghan and Moffatt (Trans. Amer. Math. Soc., ., 1529–1569, 2012), which interacts with twisted duality in a particularly natural way, leading to a generalised duality identity, and a three term contraction-deletion relation. The topological tra
18#
發(fā)表于 2025-3-24 16:38:53 | 只看該作者
19#
發(fā)表于 2025-3-24 19:00:42 | 只看該作者
https://doi.org/10.1007/978-3-642-34775-7ned rotation systems. It covers Petrie duals, geometric duals, medial graphs and Tait graphs; and the relations among them. These definitions and relations motivate much of the work presented later in the monograph.
20#
發(fā)表于 2025-3-25 02:13:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 12:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
旺苍县| 沧州市| 栾城县| 五原县| 青海省| 太原市| 阿鲁科尔沁旗| 阜平县| 班玛县| 米脂县| 老河口市| 黔西县| 南华县| 思茅市| 玉林市| 鹰潭市| 临猗县| 雅江县| 新沂市| 石渠县| 承德县| 于都县| 梁河县| 保德县| 湘潭市| 丰宁| 清水河县| 曲松县| 华池县| 黑山县| 郧西县| 德格县| 洛浦县| 阳原县| 泰州市| 蓬莱市| 平果县| 腾冲县| 舟曲县| 林周县| 聂荣县|