找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
查看: 56075|回復(fù): 59
樓主
發(fā)表于 2025-3-21 19:09:00 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Graphs in Biomedical Image Analysis, and Overlapped Cell on Tissue Dataset for Histopathology
編輯Seyed-Ahmad Ahmadi,Sérgio Pereira
視頻videohttp://file.papertrans.cn/389/388172/388172.mp4
叢書(shū)名稱Lecture Notes in Computer Science
圖書(shū)封面Titlebook: ;
出版日期Conference proceedings 2024
版次1
doihttps://doi.org/10.1007/978-3-031-55088-1
isbn_softcover978-3-031-55087-4
isbn_ebook978-3-031-55088-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
The information of publication is updating

書(shū)目名稱Graphs in Biomedical Image Analysis, and Overlapped Cell on Tissue Dataset for Histopathology影響因子(影響力)




書(shū)目名稱Graphs in Biomedical Image Analysis, and Overlapped Cell on Tissue Dataset for Histopathology影響因子(影響力)學(xué)科排名




書(shū)目名稱Graphs in Biomedical Image Analysis, and Overlapped Cell on Tissue Dataset for Histopathology網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Graphs in Biomedical Image Analysis, and Overlapped Cell on Tissue Dataset for Histopathology網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Graphs in Biomedical Image Analysis, and Overlapped Cell on Tissue Dataset for Histopathology被引頻次




書(shū)目名稱Graphs in Biomedical Image Analysis, and Overlapped Cell on Tissue Dataset for Histopathology被引頻次學(xué)科排名




書(shū)目名稱Graphs in Biomedical Image Analysis, and Overlapped Cell on Tissue Dataset for Histopathology年度引用




書(shū)目名稱Graphs in Biomedical Image Analysis, and Overlapped Cell on Tissue Dataset for Histopathology年度引用學(xué)科排名




書(shū)目名稱Graphs in Biomedical Image Analysis, and Overlapped Cell on Tissue Dataset for Histopathology讀者反饋




書(shū)目名稱Graphs in Biomedical Image Analysis, and Overlapped Cell on Tissue Dataset for Histopathology讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:30:41 | 只看該作者
Extended Graph Assessment Metrics for?Regression and?Weighted Graphssion tasks, as well as continuous adjacency matrices, and propose a lightweight CCNS distance for discrete and continuous adjacency matrices. We show the correlation of these metrics with model performance on different medical population graphs and under different learning settings, using the TADPOL
板凳
發(fā)表于 2025-3-22 03:18:57 | 只看該作者
Multi-head Graph Convolutional Network for?Structural Connectome Classification7 subjects) and OASIS3 (771 subjects). The proposed model demonstrates the highest performance compared to the existing machine-learning algorithms we tested, including classical methods and (graph and non-graph) deep learning. We provide a detailed analysis of each component of our model.
地板
發(fā)表于 2025-3-22 05:24:34 | 只看該作者
Tertiary Lymphoid Structures Generation Through Graph-Based Diffusion in oncology research. Additionally, we further illustrate the utility of the learned generative models for data augmentation in a TLS classification task. To the best of our knowledge, this is the first work that leverages the power of graph diffusion models in generating meaningful biological cell
5#
發(fā)表于 2025-3-22 10:49:51 | 只看該作者
Prior-RadGraphFormer: A?Prior-Knowledge-Enhanced Transformer for?Generating Radiology Graphs from?X-structured reports generation and multi-label classification of pathologies. Our approach represents a promising method for generating radiology graphs directly from CXR images, and has significant potential for improving medical image analysis and clinical decision-making. Our code is open sourced
6#
發(fā)表于 2025-3-22 16:25:36 | 只看該作者
A Comparative Study of?Population-Graph Construction Methods and?Graph Neural Networks for?Brain Agelation-graph construction methods and their effect on GNN performance on brain age estimation. We use the homophily metric and graph visualizations to gain valuable quantitative and qualitative insights on the extracted graph structures. For the experimental evaluation, we leverage the UK Biobank da
7#
發(fā)表于 2025-3-22 19:40:39 | 只看該作者
8#
發(fā)表于 2025-3-23 01:14:05 | 只看該作者
Multi-level Graph Representations of?Melanoma Whole Slide Images for?Identifying Immune SubgroupsMIL methods. Our experimental results comprehensively show how our whole slide image graph representation is a valuable improvement on the MIL paradigm and could help to determine early-stage prognostic markers and stratify melanoma patients for effective treatments. Code is available at ..
9#
發(fā)表于 2025-3-23 05:00:24 | 只看該作者
10#
發(fā)表于 2025-3-23 06:15:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
河北区| 永济市| 西青区| 竹山县| 南岸区| 盘山县| 湖南省| 康马县| 高青县| 彭州市| 博兴县| 博乐市| 噶尔县| 龙江县| 丰台区| 辰溪县| 东乡| 龙山县| 游戏| 潼南县| 尚志市| 旬邑县| 满城县| 台前县| 峨眉山市| 全椒县| 罗定市| 军事| 永德县| 开鲁县| 上蔡县| 文山县| 从江县| 合作市| 鸡泽县| 青岛市| 万山特区| 临江市| 松溪县| 南召县| 岑溪市|