找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: risky-drinking
31#
發(fā)表于 2025-3-26 21:19:58 | 只看該作者
Multi-modal Brain Connectivity Study Using Deep Collaborative Learningning correlation analysis and label information using deep networks, which may lead to better performance both for classification/prediction and for correlation detection. Results demonstrated the out-performance of DCL over other conventional models in terms of classification accuracy. Experiments
32#
發(fā)表于 2025-3-27 04:06:56 | 只看該作者
33#
發(fā)表于 2025-3-27 07:31:45 | 只看該作者
Cross-diagnostic Prediction of Dimensional Psychiatric Phenotypes in Anorexia Nervosa and Body Dysmodict dimensional phenotypes of insight and obsession/compulsions across a sample of unmedicated adults with BDD (n?=?29) and weight-restored AN (n?=?24). The multivariate model that included fMRI and white matter connectivity data performed significantly better in predicting both insight and obsessi
34#
發(fā)表于 2025-3-27 09:58:56 | 只看該作者
35#
發(fā)表于 2025-3-27 15:12:04 | 只看該作者
36#
發(fā)表于 2025-3-27 18:59:30 | 只看該作者
37#
發(fā)表于 2025-3-27 22:04:03 | 只看該作者
https://doi.org/10.1007/978-1-4757-9450-2eatures compared to the undirected ones for recognizing the cognitive processes. The representation power of the suggested brain networks are tested in a task-fMRI dataset of Human Connectome Project and a Complex Problem Solving dataset.
38#
發(fā)表于 2025-3-28 05:21:42 | 只看該作者
https://doi.org/10.1007/978-1-4615-7514-6cores at future time-points. We use a sigmoidal function to model latent disease progression, which gives rise to clinical observations in our generative model. We implemented an approximate Bayesian inference strategy on the proposed model to estimate the parameters on data from a large population
39#
發(fā)表于 2025-3-28 06:26:46 | 只看該作者
40#
發(fā)表于 2025-3-28 11:58:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 15:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
张家川| 清苑县| 安塞县| 西充县| 西丰县| 大余县| 广饶县| 颍上县| 民权县| 湘潭市| 宝应县| 鲁山县| 晋江市| 奈曼旗| 靖边县| 璧山县| 朝阳区| 望城县| 裕民县| 武义县| 洛阳市| 原平市| 涞水县| 镇原县| 南汇区| 汉源县| 神木县| 新余市| 东城区| 桐城市| 合肥市| 韩城市| 宁城县| 磐安县| 伊川县| 平和县| 同德县| 伊川县| 会同县| 山阳县| 万盛区|