找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Thoracic
11#
發(fā)表于 2025-3-23 13:18:03 | 只看該作者
12#
發(fā)表于 2025-3-23 17:09:30 | 只看該作者
Graphs from Total Graphs,In this chapter, we study certain graphs obtained from total graphs of commutative rings. More specifically, we concentrate on the total graph without the zero element, the complement of the total graph, and its generalizations.
13#
發(fā)表于 2025-3-23 19:51:26 | 只看該作者
14#
發(fā)表于 2025-3-24 00:18:21 | 只看該作者
15#
發(fā)表于 2025-3-24 03:08:33 | 只看該作者
16#
發(fā)表于 2025-3-24 07:23:53 | 只看該作者
https://doi.org/10.1007/978-81-322-1865-4ph on a surface so that no two edges cross, an intuitive geometric problem that can be enriched by specifying symmetries or combinatorial side-conditions. Graphs on surfaces form a natural link between discrete and continuous mathematics.
17#
發(fā)表于 2025-3-24 10:53:46 | 只看該作者
https://doi.org/10.1007/978-981-19-2370-8graph. In variation to this, a graph using the addition of the ring is constructed and is called the total graph of commutative rings. The next several chapters of this book are devoted to this notion of total graph.
18#
發(fā)表于 2025-3-24 15:12:08 | 只看該作者
Introduction,, we state some definitions and notation used throughout to keep this book as self-contained as possible. This chapter includes some basic definitions and results which are needed for the subsequent chapters.
19#
發(fā)表于 2025-3-24 21:20:40 | 只看該作者
20#
發(fā)表于 2025-3-25 00:45:54 | 只看該作者
Total Graphs of Commutative Rings,graph. In variation to this, a graph using the addition of the ring is constructed and is called the total graph of commutative rings. The next several chapters of this book are devoted to this notion of total graph.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 22:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鸡泽县| 丰镇市| 巴青县| 富裕县| 固安县| 专栏| 嘉义市| 虹口区| 登封市| 罗甸县| 兰坪| 达州市| 栾川县| 潞城市| 卢龙县| 壤塘县| 泰宁县| 夏河县| 西平县| 浮山县| 大新县| 张家港市| 多伦县| 屯昌县| 交城县| 九寨沟县| 五家渠市| 青田县| 子长县| 上高县| 太白县| 灵石县| 利辛县| 曲靖市| 定州市| 麻城市| 工布江达县| 江门市| 湟中县| 九台市| 胶州市|