找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 遮陽傘
21#
發(fā)表于 2025-3-25 05:51:02 | 只看該作者
https://doi.org/10.1007/978-3-662-67273-0 well-known “scissors, paper and stone” game, is considered. We show that in a tournament game, both the players have a unique optimal strategy. We then consider incidence matrix games, where the payoff matrix is the incidence matrix of a directed graph. A graph-theoretic description of the value and the optimal strategies is provided.
22#
發(fā)表于 2025-3-25 09:05:15 | 只看該作者
23#
發(fā)表于 2025-3-25 12:49:54 | 只看該作者
Cycles and Cuts,djacency matrix of a regular graph and that of its complement and line graph. Several results in this direction are proved in the next section. In the final section we derive spectral properties of strongly regular graph and apply them to derive the well-known Friendship Theorem.
24#
發(fā)表于 2025-3-25 16:59:23 | 只看該作者
25#
發(fā)表于 2025-3-25 22:13:31 | 只看該作者
26#
發(fā)表于 2025-3-26 02:28:27 | 只看該作者
https://doi.org/10.1007/978-1-4613-2643-4that bring out the connection between the distance matrix and the Laplacian of a tree. A formula for the inverse of the distance matrix, due to Graham and Lovaász, is proved. In the final section we prove some properties of the eigenvalues of the distance matrix of a tree.
27#
發(fā)表于 2025-3-26 04:18:16 | 只看該作者
28#
發(fā)表于 2025-3-26 11:09:58 | 只看該作者
29#
發(fā)表于 2025-3-26 13:08:36 | 只看該作者
30#
發(fā)表于 2025-3-26 18:23:30 | 只看該作者
Adjacency Matrix,ted. The Matrix-Tree Theorem and some related results are proved. Bounds for the Laplacian spectral radius are obtained. The edge-Laplacian is considered and a formula for the inverse of the edge-Laplacian of a tree is obtained. In the process we also obtain a formula for the Moore-Penrose inverse o
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 11:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新巴尔虎左旗| 正定县| 静安区| 镇赉县| 望奎县| 大港区| 庆城县| 华池县| 岳西县| 正宁县| 蚌埠市| 娱乐| 辉县市| 宁陕县| 顺平县| 瑞金市| 和政县| 遵义市| 清远市| 大同市| 西安市| 栾川县| 长治市| 常德市| 新乐市| 新昌县| 忻城县| 大港区| 汪清县| 漯河市| 靖远县| 元阳县| 宣武区| 寿光市| 博白县| 英山县| 江达县| 宁晋县| 抚州市| 凌源市| 集贤县|