找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 明顯
41#
發(fā)表于 2025-3-28 16:26:24 | 只看該作者
42#
發(fā)表于 2025-3-28 21:25:03 | 只看該作者
https://doi.org/10.1007/978-3-663-10855-9crossing number are introduced and related to one another. We then deal with topological techniques in the theory of chromatic numbers, and state a very ambitious meta-conjecture which is quite useful in generating true theorems. In closing, we attempt to suggest appropriate directions for further r
43#
發(fā)表于 2025-3-29 00:04:13 | 只看該作者
44#
發(fā)表于 2025-3-29 06:47:00 | 只看該作者
https://doi.org/10.1007/978-3-322-87301-9s, (2) we can determine the first p moments by counting closed walks and then find the spectrum from the moments, or (3) we can use certain subgraphs to determine the coefficients of the characteristic polynomial and then find its roots..In practice, however, all of these approaches may prove to be
45#
發(fā)表于 2025-3-29 11:04:50 | 只看該作者
https://doi.org/10.1007/978-3-663-01491-1n independent set of vertices that contains at least 1/4 of the vertices of the graph. The purpose of this paper is to give an algorithm that produces an independent set in a planar graph that contains more than 2/9 of the vertices of the graph.
46#
發(fā)表于 2025-3-29 15:00:00 | 只看該作者
https://doi.org/10.1007/978-3-476-03772-5induce 1-factorizations of complete graphs. It is easy to show that these 1-factorizations possess enough symmetry to insure that if {F., F.} and {F., F.} are pairs of distinct 1-factors from such a 1-factorization, then the cycle structures of F. ∪ F. and F. ∪ F. are identical. The method is applie
47#
發(fā)表于 2025-3-29 15:53:40 | 只看該作者
https://doi.org/10.1007/978-3-663-02714-0er well-known graphical invariants is discussed, and ζ is evaluated for a variety of special classes of graphs. A simple algorithm is developed for determining ζ in the case of a tree, and it is shown that this tree algorithm can be generalized to yield ζ for any connected graph. Degree conditions a
48#
發(fā)表于 2025-3-29 22:57:32 | 只看該作者
49#
發(fā)表于 2025-3-30 01:24:30 | 只看該作者
50#
發(fā)表于 2025-3-30 05:11:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 07:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
清原| 明光市| 武定县| 河北区| 垫江县| 永顺县| 逊克县| 莱芜市| 江阴市| 鄂托克旗| 芜湖市| 勃利县| 密云县| 嘉义市| 定边县| 宣恩县| 法库县| 钟山县| 湘乡市| 旺苍县| 五大连池市| 德保县| 改则县| 长岛县| 墨竹工卡县| 高青县| 红原县| 廊坊市| 监利县| 沙河市| 弋阳县| 通道| 砀山县| 苏州市| 江源县| 武夷山市| 融水| 黄浦区| 纳雍县| 祁连县| 松阳县|