找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 法令
11#
發(fā)表于 2025-3-23 13:21:41 | 只看該作者
https://doi.org/10.1007/978-1-137-03799-2Ist . ein Graph, so hei?t eine Teilmenge . ? .(.) . von ., wenn .(.) = .(.) gilt. . hei?t . von ., wenn es keine Absorptionsmenge . mit |.| < |.| gibt. Ist . eine minimale Absorptionsmenge von ., so nennt man |.| = .(.) . von ..
12#
發(fā)表于 2025-3-23 15:47:51 | 只看該作者
https://doi.org/10.1007/978-94-011-9314-6In diesem Kapitel besch?ftigen wir uns mit einem Teil der topologischen Graphentheorie. Dabei steht die Frage im Vordergrund, welche Graphen man in die Ebene so einbetten kann, da? sich keine zwei Kanten schneiden, und welche Eigenschaften solche Graphen besitzen. Zur Pr?zisierung dieser Probleme ben?tigen wir einige neue Begriffe.
13#
發(fā)表于 2025-3-23 21:11:44 | 只看該作者
14#
發(fā)表于 2025-3-24 02:06:15 | 只看該作者
Moment by Moment by ShakespeareEin zusammenh?ngender Multidigraph . = (.) hei?t ., wenn folgende Bedingungen erfüllt sind:
15#
發(fā)表于 2025-3-24 03:48:43 | 只看該作者
Eulertouren und Hamiltonkreise,Es sei . ein zusammenh?ngender und nicht trivialer Graph. Existiert in . ein Kantenzug . mit .(.) = .(.), also enth?lt . alle Kanten des Graphen, so hei?t . und .. Ist der Kantenzug . zus?tzlich geschlossen, so nennen wir ., und der Graph . hei?t ..
16#
發(fā)表于 2025-3-24 06:32:18 | 只看該作者
Faktortheorie,Ein Teilgraph . eines Graphen . mit .(.) = . (.) hei?t . von .. Ist . : .(.) → N. eine Funktion und . ein Faktor von . mit .(.) = .(.) für alle . ∈ .(.), so nennen wir . einen . von .. Im Fall .(.) ≡ . hei?t . auch ..
17#
發(fā)表于 2025-3-24 12:30:47 | 只看該作者
18#
發(fā)表于 2025-3-24 17:57:07 | 只看該作者
19#
發(fā)表于 2025-3-24 20:54:51 | 只看該作者
20#
發(fā)表于 2025-3-24 23:11:10 | 只看該作者
Netzwerke,Ein zusammenh?ngender Multidigraph . = (.) hei?t ., wenn folgende Bedingungen erfüllt sind:
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 16:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昭平县| 临汾市| 额尔古纳市| 万年县| 宜良县| 凌海市| 格尔木市| 桦南县| 扶余县| 台南县| 北碚区| 巴林左旗| 齐齐哈尔市| 香港| 铜梁县| 沽源县| 庐江县| 阿合奇县| 安顺市| 泾源县| 长汀县| 宁陵县| 九龙城区| 金湖县| 东平县| 柘荣县| 濮阳县| 平利县| 巨鹿县| 德惠市| 休宁县| 鱼台县| 通江县| 亚东县| 晋城| 瓦房店市| 孙吴县| 阿克苏市| 阿拉善盟| 涟水县| 延长县|