找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: CYNIC
41#
發(fā)表于 2025-3-28 17:44:48 | 只看該作者
https://doi.org/10.1007/978-1-4419-7130-2planar and regular. Moreover, we study the less known class of?.-Hamiltonian-ordered graphs, which are graphs that admit for any .-tuple of vertices a Hamiltonian cycle visiting them in the order given by the tuple. We prove that . remains .-hard in these restricted cases, even if a Hamiltonian cycl
42#
發(fā)表于 2025-3-28 18:51:06 | 只看該作者
Molecular Design of Tautomeric Compoundsrtices. Betweenness centrality is efficiently computable and it is a fundamental tool in network science. Continuing and extending previous work, we study the efficient computability of betweenness centrality in . graphs (graphs with fixed vertex set but time-varying arc sets). Unlike in the static
43#
發(fā)表于 2025-3-29 01:06:03 | 只看該作者
44#
發(fā)表于 2025-3-29 03:04:32 | 只看該作者
45#
發(fā)表于 2025-3-29 10:49:20 | 只看該作者
Graph-Theoretic Concepts in Computer Science978-3-030-86838-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
46#
發(fā)表于 2025-3-29 13:17:46 | 只看該作者
47#
發(fā)表于 2025-3-29 16:17:38 | 只看該作者
https://doi.org/10.1007/978-1-4419-7130-2planar and regular. Moreover, we study the less known class of?.-Hamiltonian-ordered graphs, which are graphs that admit for any .-tuple of vertices a Hamiltonian cycle visiting them in the order given by the tuple. We prove that . remains .-hard in these restricted cases, even if a Hamiltonian cycle is additionally given as part of the input.
48#
發(fā)表于 2025-3-29 23:44:27 | 只看該作者
49#
發(fā)表于 2025-3-30 02:13:37 | 只看該作者
50#
發(fā)表于 2025-3-30 04:42:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 16:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
当雄县| 镇赉县| 潜江市| 汤阴县| 云霄县| 塘沽区| 黄石市| 民和| 论坛| 蒙山县| 禹州市| 肃北| 张家界市| 邯郸市| 武隆县| 衡水市| 理塘县| 江都市| 咸丰县| 红原县| 万州区| 虎林市| 西华县| 松溪县| 孟州市| 怀化市| 四会市| 南雄市| 舞阳县| 福清市| 庆云县| 岳阳市| 漠河县| 阜新市| 吉林省| 乐昌市| 寿宁县| 安达市| 塔河县| 望奎县| 同德县|