找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 無感覺
11#
發(fā)表于 2025-3-23 21:56:23 | 只看該作者
Bimodular Decomposition of Bipartite Graphs). It is shown how a unique decomposition tree represents the bimodular decomposition of a bipartite graph, with strong analogs with modular decomposition of graphs. An .(..) algorithm for this decomposition is provided. At least a classification of the 2-modules of a bipartite graph is given.
12#
發(fā)表于 2025-3-24 00:51:16 | 只看該作者
Coloring a Graph Using Split Decompositionasses of graphs. In particular we present an .(...) algorithm to compute the chromatic number for all those graphs having a split decomposition in which every prime graph is an induced subgraph of either a .. or a . for some .≥ 3.
13#
發(fā)表于 2025-3-24 04:04:41 | 只看該作者
14#
發(fā)表于 2025-3-24 08:15:28 | 只看該作者
15#
發(fā)表于 2025-3-24 13:22:29 | 只看該作者
16#
發(fā)表于 2025-3-24 15:46:35 | 只看該作者
17#
發(fā)表于 2025-3-24 22:37:56 | 只看該作者
18#
發(fā)表于 2025-3-25 00:15:55 | 只看該作者
https://doi.org/10.1007/978-94-010-3030-4s appearing in a neighborhood of a vertex can be completed into intervals such that these intervals are disjoint for adjacent vertices. We justify introduction of this notion by showing that use of these labelings provides good estimates for the span of the label space, and also provide a polynomial
19#
發(fā)表于 2025-3-25 05:30:48 | 只看該作者
https://doi.org/10.1007/978-3-319-33282-6graph .=(.,.) ... if there is a system . of at most . spanning trees of . such that for any two vertices .,. of . a spanning tree . exists such that ..(.,.)≤ ..(.,.)+.. Among other results, we show that AT-free graphs have a system of two collective additive tree 2-spanners (whereas there are trapez
20#
發(fā)表于 2025-3-25 10:02:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 01:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临猗县| 太原市| 台湾省| 阳东县| 遵义市| 沐川县| 四平市| 伊通| 万州区| 汤阴县| 海南省| 北流市| 西贡区| 蓬莱市| 无为县| 晴隆县| 集安市| 松江区| 阳山县| 南涧| 西峡县| 金秀| 阜南县| 瑞丽市| 扎鲁特旗| 宾川县| 永靖县| 额尔古纳市| 洛川县| 嘉定区| 罗山县| 德兴市| 高青县| 滨州市| 临桂县| 类乌齐县| 阳城县| 遵义市| 临颍县| 龙里县| 洛隆县|