找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: ARSON
51#
發(fā)表于 2025-3-30 09:09:35 | 只看該作者
52#
發(fā)表于 2025-3-30 13:35:43 | 只看該作者
https://doi.org/10.1007/978-3-322-85971-6A new parallel algorithm for the triangulation of a nonconvex polytope . is presented. It will be shown that . can be decomposed into O(n+r.) tetrahedra within time O(log(.) · (max{log*(.),log(.)}) with O(n+r.) processors, where . denotes the number of reflex edges of ..
53#
發(fā)表于 2025-3-30 19:56:16 | 只看該作者
https://doi.org/10.1007/978-3-322-96867-8A set of operations on 4-connected graphs is introduced in which only line addition and vertex splitting are involved. It is shown that every 4-connected graph can be assembled from either the complete graph .. or the double-axle wheel .. on four vertices using only these operations, with 4-connectivity preserved.
54#
發(fā)表于 2025-3-30 22:11:34 | 只看該作者
https://doi.org/10.1007/978-3-662-04882-5A conjecture about digraphs is presented. The conjecture has relevance to parallel computing, and is supported by a few concrete results.
55#
發(fā)表于 2025-3-31 02:38:39 | 只看該作者
56#
發(fā)表于 2025-3-31 06:08:04 | 只看該作者
Parallel triangulation of nonconvex polytopes,A new parallel algorithm for the triangulation of a nonconvex polytope . is presented. It will be shown that . can be decomposed into O(n+r.) tetrahedra within time O(log(.) · (max{log*(.),log(.)}) with O(n+r.) processors, where . denotes the number of reflex edges of ..
57#
發(fā)表于 2025-3-31 13:12:48 | 只看該作者
58#
發(fā)表于 2025-3-31 15:33:26 | 只看該作者
59#
發(fā)表于 2025-3-31 18:48:23 | 只看該作者
60#
發(fā)表于 2025-4-1 00:21:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 03:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
五常市| 太原市| 金乡县| 波密县| 贵溪市| 永丰县| 彰武县| 盐山县| 尉犁县| 托克逊县| 景东| 台北县| 巴中市| 平武县| 泗水县| 琼结县| 监利县| 肃北| 邛崃市| 辉南县| 永清县| 龙游县| 峨边| 龙山县| 南开区| 武鸣县| 时尚| 四川省| 宝兴县| 焉耆| 景宁| 肇源县| 梁河县| 吴江市| 南溪县| 轮台县| 谢通门县| 沙田区| 普兰店市| 荔波县| 运城市|