找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 櫥柜
51#
發(fā)表于 2025-3-30 10:59:08 | 只看該作者
52#
發(fā)表于 2025-3-30 14:44:58 | 只看該作者
https://doi.org/10.1007/978-3-322-90466-9at a . of a perfect strip-composed graph, with the basic graphs belonging to a class ., can be found in polynomial time, provided that the . problem can be solved on . in polynomial time. We also design a new, more efficient, combinatorial algorithm for the . problem on strip-composed claw-free perfect graphs.
53#
發(fā)表于 2025-3-30 20:28:03 | 只看該作者
Moderne Organisationstheorien 2 graph classes for all but finitely many cases, whenever neither of the forbidden graphs is a clique, a pan, or a complement of these graphs. Further reducing the remaining open cases we show that (with respect to graph isomorphism) forbidding a pan is equivalent to forbidding a clique of size three.
54#
發(fā)表于 2025-3-30 22:59:07 | 只看該作者
55#
發(fā)表于 2025-3-31 01:11:47 | 只看該作者
56#
發(fā)表于 2025-3-31 07:09:29 | 只看該作者
Constructing Resilient Structures in Graphs: Rigid vs. Competitive Fault-Tolerancet-tolerant, namely, reinforcing it so that following a failure event, its surviving part continues to satisfy the requirements. The talk will distinguish between two types of fault-tolerance, termed rigid and competitive fault tolerance, compare these two notions, and illustrate them on a number of examples.
57#
發(fā)表于 2025-3-31 11:44:40 | 只看該作者
Minimum Weighted Clique Cover on Strip-Composed Perfect Graphsat a . of a perfect strip-composed graph, with the basic graphs belonging to a class ., can be found in polynomial time, provided that the . problem can be solved on . in polynomial time. We also design a new, more efficient, combinatorial algorithm for the . problem on strip-composed claw-free perfect graphs.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 23:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
右玉县| 肃南| 嘉禾县| 云阳县| 长宁区| 七台河市| 和林格尔县| 新乐市| 宜宾县| 农安县| 航空| 九寨沟县| 汝州市| 周至县| 天祝| 长寿区| 永丰县| 广灵县| 黄石市| 西乡县| 陆川县| 台北市| 阿拉善盟| 临高县| 两当县| 通辽市| 南京市| 铜川市| 宁陕县| 凤庆县| 阳泉市| 江孜县| 仁布县| 康马县| 东平县| 遂川县| 娄烦县| 中江县| 曲水县| 榕江县| 牟定县|