找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: DEIFY
11#
發(fā)表于 2025-3-23 13:30:39 | 只看該作者
On Minimum Connecting Transition Sets in Graphs,cutively in a walk in the graph. In this paper, we look for the smallest set of transitions needed to be able to go from any vertex of the given graph to any other. We prove that this problem is NP-hard and study approximation algorithms. We develop theoretical tools that help to study this problem.
12#
發(fā)表于 2025-3-23 14:26:44 | 只看該作者
Recognizing Hyperelliptic Graphs in Polynomial Time,aph algorithms and number theory. We consider so-called . (multigraphs of gonality 2) and provide a safe and complete set of reduction rules for such multigraphs, showing that we can recognize hyperelliptic graphs in time ., where . is the number of vertices and . the number of edges of the multigra
13#
發(fā)表于 2025-3-23 20:51:14 | 只看該作者
14#
發(fā)表于 2025-3-24 01:27:36 | 只看該作者
,Optimality Program in Segment and?String Graphs,is very likely to be asymptotically best on general graphs. Intrigued by an algorithm packing curves in . by Fox and Pach [SODA’11], we investigate which problems have subexponential algorithms on the intersection graphs of curves (string graphs) or segments (segment intersection graphs) and which p
15#
發(fā)表于 2025-3-24 05:15:46 | 只看該作者
Anagram-Free Chromatic Number Is Not Pathwidth-Bounded,s note, we show that there are planar graphs of pathwidth 3 with arbitrarily large anagram-free chromatic number. More specifically, we describe 2.-vertex planar graphs of pathwidth 3 with anagram-free chromatic number .. We also describe . vertex graphs with pathwidth . having anagram-free chromati
16#
發(fā)表于 2025-3-24 08:34:40 | 只看該作者
17#
發(fā)表于 2025-3-24 14:05:10 | 只看該作者
18#
發(fā)表于 2025-3-24 15:06:30 | 只看該作者
19#
發(fā)表于 2025-3-24 22:57:36 | 只看該作者
20#
發(fā)表于 2025-3-25 00:43:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 02:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
山阳县| 中西区| 明光市| 阿勒泰市| 洞口县| 秦皇岛市| 深水埗区| 忻州市| 西贡区| 七台河市| 冕宁县| 桦南县| 天水市| 西乡县| 信阳市| 三江| 建瓯市| 旬阳县| 将乐县| 班戈县| 满洲里市| 柳州市| 海伦市| 二连浩特市| 雷州市| 横山县| 贵州省| 讷河市| 闸北区| 汉寿县| 隆昌县| 建湖县| 驻马店市| 乐至县| 安康市| 自贡市| 囊谦县| 咸阳市| 千阳县| 胶州市| 连城县|