找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Menthol
11#
發(fā)表于 2025-3-23 12:52:14 | 只看該作者
12#
發(fā)表于 2025-3-23 16:17:08 | 只看該作者
13#
發(fā)表于 2025-3-23 20:38:06 | 只看該作者
Missile Guidance and Control Systemsrtices such that every chordless path joining them has even length. We prove that for every bull-reducible Berge graph . with at least two vertices, either . or its complementary graph . has an even pair.
14#
發(fā)表于 2025-3-23 23:43:53 | 只看該作者
https://doi.org/10.1007/978-1-4899-6427-4r a graph . is denoted by π(.). For instance, by the famous 1906 theorem of Thue, π(.) = 3 if . is a simple path with at least 4 vertices. This implies that π(.) ≤ 4 if Δ(.) ≤ 2. But how large can π(.) be for cubic graphs, .-trees, or planar graphs? This paper is a small survey of problems and results of the above type.
15#
發(fā)表于 2025-3-24 04:29:20 | 只看該作者
16#
發(fā)表于 2025-3-24 08:49:00 | 只看該作者
Ratios of Some Domination Parameters in Graphs and Claw-free Graphs,er, the total domination number, the paired domination number, the double domination number and the independence number. We summarize the old and new results in a table and give for each bound examples of extremal families.
17#
發(fā)表于 2025-3-24 11:30:27 | 只看該作者
Even Pairs in Bull-reducible Graphs,rtices such that every chordless path joining them has even length. We prove that for every bull-reducible Berge graph . with at least two vertices, either . or its complementary graph . has an even pair.
18#
發(fā)表于 2025-3-24 16:26:31 | 只看該作者
Nonrepetitive Graph Coloring,r a graph . is denoted by π(.). For instance, by the famous 1906 theorem of Thue, π(.) = 3 if . is a simple path with at least 4 vertices. This implies that π(.) ≤ 4 if Δ(.) ≤ 2. But how large can π(.) be for cubic graphs, .-trees, or planar graphs? This paper is a small survey of problems and results of the above type.
19#
發(fā)表于 2025-3-24 21:21:13 | 只看該作者
20#
發(fā)表于 2025-3-25 01:38:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 15:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
琼结县| 调兵山市| 柞水县| 峨山| 将乐县| 禄丰县| 白沙| 边坝县| 东城区| 宜兰县| 江孜县| 凌云县| 临江市| 广德县| 淮南市| 枝江市| 乾安县| 武功县| 江北区| 龙泉市| 泽库县| 昭平县| 根河市| 和政县| 镇雄县| 安丘市| 曲周县| 林芝县| 湛江市| 武强县| 仲巴县| 海原县| 瑞金市| 兰坪| 河西区| 营口市| 莱阳市| 察雅县| 稷山县| 新乡市| 黄龙县|