找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 連結(jié)
21#
發(fā)表于 2025-3-25 06:38:38 | 只看該作者
22#
發(fā)表于 2025-3-25 08:45:29 | 只看該作者
23#
發(fā)表于 2025-3-25 13:17:04 | 只看該作者
24#
發(fā)表于 2025-3-25 19:19:23 | 只看該作者
https://doi.org/10.1007/978-3-211-71585-7s, and finite locally primitive graphs. The nature of the group theoretic techniques used range from elementary ones to some involving the finite simple group classification. In particular the theorem of O’Nan and Scott for finite primitive permutation groups, and a generalisation of it for finite quasiprimitive permutation groups is discussed.
25#
發(fā)表于 2025-3-25 21:25:07 | 只看該作者
Finite transitive permutation groups and finite vertex-transitive graphs,s, and finite locally primitive graphs. The nature of the group theoretic techniques used range from elementary ones to some involving the finite simple group classification. In particular the theorem of O’Nan and Scott for finite primitive permutation groups, and a generalisation of it for finite quasiprimitive permutation groups is discussed.
26#
發(fā)表于 2025-3-26 00:50:13 | 只看該作者
27#
發(fā)表于 2025-3-26 08:16:12 | 只看該作者
28#
發(fā)表于 2025-3-26 09:33:32 | 只看該作者
https://doi.org/10.1057/9780333985168oint work by P. Niemeyer and the author on fiber-equivalence, which is a refinement of end-equivalence. Section 6: the classification of locally finite, edge-transitive planar graphs by J.E. Graver and the author in terms of the number of ends, their Petrie walks, and the local behavior of their automorphism groups.
29#
發(fā)表于 2025-3-26 16:34:46 | 只看該作者
30#
發(fā)表于 2025-3-26 18:42:48 | 只看該作者
https://doi.org/10.1007/978-981-16-9621-3 graph. Following this, we survey some basic material from permutation groups and model theory. Then we discuss various constructions and characterisations of infinite highly symmetric graphs, and connections with several topics in finite combinatorics, including random graphs, enumeration, and grap
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 01:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
定日县| 仙桃市| 津南区| 萨迦县| 元阳县| 曲水县| 独山县| 固始县| 宜宾县| 双城市| 吉隆县| 静海县| 永新县| 象山县| 刚察县| 高碑店市| 迁安市| 南郑县| 北川| 剑阁县| 红安县| 新巴尔虎左旗| 资溪县| 汉沽区| 莎车县| 南阳市| 朝阳区| 廉江市| 五大连池市| 阿坝县| 安吉县| 张掖市| 四川省| 沧源| 屏南县| 高雄市| 枞阳县| 宜州市| 门源| 汾阳市| 丹江口市|