找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 連結(jié)
21#
發(fā)表于 2025-3-25 06:38:38 | 只看該作者
22#
發(fā)表于 2025-3-25 08:45:29 | 只看該作者
23#
發(fā)表于 2025-3-25 13:17:04 | 只看該作者
24#
發(fā)表于 2025-3-25 19:19:23 | 只看該作者
https://doi.org/10.1007/978-3-211-71585-7s, and finite locally primitive graphs. The nature of the group theoretic techniques used range from elementary ones to some involving the finite simple group classification. In particular the theorem of O’Nan and Scott for finite primitive permutation groups, and a generalisation of it for finite quasiprimitive permutation groups is discussed.
25#
發(fā)表于 2025-3-25 21:25:07 | 只看該作者
Finite transitive permutation groups and finite vertex-transitive graphs,s, and finite locally primitive graphs. The nature of the group theoretic techniques used range from elementary ones to some involving the finite simple group classification. In particular the theorem of O’Nan and Scott for finite primitive permutation groups, and a generalisation of it for finite quasiprimitive permutation groups is discussed.
26#
發(fā)表于 2025-3-26 00:50:13 | 只看該作者
27#
發(fā)表于 2025-3-26 08:16:12 | 只看該作者
28#
發(fā)表于 2025-3-26 09:33:32 | 只看該作者
https://doi.org/10.1057/9780333985168oint work by P. Niemeyer and the author on fiber-equivalence, which is a refinement of end-equivalence. Section 6: the classification of locally finite, edge-transitive planar graphs by J.E. Graver and the author in terms of the number of ends, their Petrie walks, and the local behavior of their automorphism groups.
29#
發(fā)表于 2025-3-26 16:34:46 | 只看該作者
30#
發(fā)表于 2025-3-26 18:42:48 | 只看該作者
https://doi.org/10.1007/978-981-16-9621-3 graph. Following this, we survey some basic material from permutation groups and model theory. Then we discuss various constructions and characterisations of infinite highly symmetric graphs, and connections with several topics in finite combinatorics, including random graphs, enumeration, and grap
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 07:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
义马市| 台中县| 古交市| 南涧| 广平县| 洞口县| 古田县| 石家庄市| 茌平县| 大丰市| 永兴县| 呼伦贝尔市| 内丘县| 建始县| 垣曲县| 志丹县| 武陟县| 和硕县| 德化县| 红河县| 临沂市| 泸西县| 靖边县| 朝阳县| 宁武县| 霍州市| 桃园市| 蓝田县| 石嘴山市| 乌兰察布市| 安西县| 宣武区| 海阳市| 江达县| 涟源市| 诸城市| 贵南县| 鄯善县| 赤壁市| 高密市| 福海县|