找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Reagan
31#
發(fā)表于 2025-3-26 22:02:36 | 只看該作者
32#
發(fā)表于 2025-3-27 01:34:04 | 只看該作者
33#
發(fā)表于 2025-3-27 06:52:58 | 只看該作者
Conceptual Graphs for Formally Managing and Discovering Complementary Competences,ovry of competences. The foundings of the proposals that are described here after are a formal representation of competences using conceptual graphs and the use of operations on conceptual graphs for competence discovery and their possible composition.
34#
發(fā)表于 2025-3-27 12:29:33 | 只看該作者
https://doi.org/10.1057/9780230599048te-of-the-art in terms of scalability. We used a large LUBM dataset with ten billion triples, and our tests show that RDF-SQ is significantly faster and more efficient than the competitors in almost all cases.
35#
發(fā)表于 2025-3-27 17:00:09 | 只看該作者
https://doi.org/10.1007/978-3-030-52474-6. Extensive experiments are conducted to assess the recommendation performance in term of . and .. Experimental results show that the REN is a good recommendation resource with high quality of related entities. For recommending related entity, the proposed REN-based method achieves good performance
36#
發(fā)表于 2025-3-27 20:20:01 | 只看該作者
RDF-SQ: Mixing Parallel and Sequential Computation for Top-Down OWL RL Inference,te-of-the-art in terms of scalability. We used a large LUBM dataset with ten billion triples, and our tests show that RDF-SQ is significantly faster and more efficient than the competitors in almost all cases.
37#
發(fā)表于 2025-3-28 00:43:32 | 只看該作者
Bring User Interest to Related Entity Recommendation,. Extensive experiments are conducted to assess the recommendation performance in term of . and .. Experimental results show that the REN is a good recommendation resource with high quality of related entities. For recommending related entity, the proposed REN-based method achieves good performance
38#
發(fā)表于 2025-3-28 02:53:58 | 只看該作者
Graph Structures for Knowledge Representation and Reasoning
39#
發(fā)表于 2025-3-28 07:13:18 | 只看該作者
40#
發(fā)表于 2025-3-28 10:24:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
会同县| 疏附县| 宁海县| 台江县| 大埔县| 北流市| 杨浦区| 南昌县| 福建省| 达尔| 禹州市| 长白| 湟中县| 木里| 扬中市| 大方县| 巢湖市| 南溪县| 武义县| 波密县| 永定县| 利辛县| 三亚市| 瓮安县| 体育| 仙桃市| 拉孜县| 定州市| 梅州市| 那坡县| 万盛区| 安多县| 新乐市| 临海市| 泗阳县| 林口县| 进贤县| 卢湾区| 长泰县| 鄂托克旗| 郓城县|