找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
查看: 50512|回復(fù): 43
樓主
發(fā)表于 2025-3-21 16:12:05 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Graph Representation Learning
編輯William L. Hamilton
視頻videohttp://file.papertrans.cn/388/387933/387933.mp4
叢書名稱Synthesis Lectures on Artificial Intelligence and Machine Learning
圖書封面Titlebook: ;
出版日期Book 20201st edition
版次1
doihttps://doi.org/10.1007/978-3-031-01588-5
isbn_softcover978-3-031-00460-5
isbn_ebook978-3-031-01588-5Series ISSN 1939-4608 Series E-ISSN 1939-4616
issn_series 1939-4608
The information of publication is updating

書目名稱Graph Representation Learning影響因子(影響力)




書目名稱Graph Representation Learning影響因子(影響力)學(xué)科排名




書目名稱Graph Representation Learning網(wǎng)絡(luò)公開度




書目名稱Graph Representation Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Graph Representation Learning被引頻次




書目名稱Graph Representation Learning被引頻次學(xué)科排名




書目名稱Graph Representation Learning年度引用




書目名稱Graph Representation Learning年度引用學(xué)科排名




書目名稱Graph Representation Learning讀者反饋




書目名稱Graph Representation Learning讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:07:02 | 只看該作者
https://doi.org/10.1007/978-3-322-84766-9In Chapter 3 we discussed approaches for learning low-dimensional embeddings of nodes. We focused on so-called . approaches, where we learn a unique embedding for each node. In this chapter, we will continue our focus on shallow embedding methods, and we will introduce techniques to deal with multi-relational graphs.
板凳
發(fā)表于 2025-3-22 04:14:35 | 只看該作者
Mikro?konomik im Bachelor-StudiumThe previous parts of this book introduced a wide variety of methods for learning representations of graphs. In this final part of the book, we will discuss a distinct but closely related task: the problem of
地板
發(fā)表于 2025-3-22 05:48:13 | 只看該作者
5#
發(fā)表于 2025-3-22 09:20:01 | 只看該作者
Traditional Graph Generation ApproachesThe previous parts of this book introduced a wide variety of methods for learning representations of graphs. In this final part of the book, we will discuss a distinct but closely related task: the problem of
6#
發(fā)表于 2025-3-22 13:55:08 | 只看該作者
https://doi.org/10.1007/978-3-322-85960-0their graph position and the structure of their local graph neighborhood. In other words, we want to project nodes into a latent space, where geometric relations in this latent space correspond to relationships (e.g., edges) in the original graph or network [Hoff et al., 2002] (Figure 3.1).
7#
發(fā)表于 2025-3-22 18:06:22 | 只看該作者
8#
發(fā)表于 2025-3-23 00:22:10 | 只看該作者
https://doi.org/10.1007/978-3-658-41287-6on of objects (i.e., nodes), along with a set of interactions (i.e., edges) between pairs of these objects. For example, to encode a social network as a graph we might use nodes to represent individuals and use edges to represent that two individuals are friends (Figure 1.1). In the biological domai
9#
發(fā)表于 2025-3-23 02:41:49 | 只看該作者
10#
發(fā)表于 2025-3-23 05:49:45 | 只看該作者
https://doi.org/10.1007/978-3-322-83428-7nt works arising in this area, and I expect a proper overview of graph representation learning will never be truly complete for many years to come. My hope is that these chapters provide a sufficient foundation and overview for those who are interested in becoming practitioners of these techniques o
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 22:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
二连浩特市| 施秉县| 桃园市| 宁武县| 巴中市| 壤塘县| 三门县| 交城县| 青铜峡市| 武鸣县| 凤山市| 高陵县| 乾安县| 阆中市| 廊坊市| 武冈市| 安国市| 闽清县| 浏阳市| 和静县| 西林县| 庆城县| 高平市| 苍山县| 云浮市| 卓尼县| 游戏| 永年县| 太和县| 南丹县| 镇平县| 吉水县| 汕尾市| 牟定县| 腾冲县| 江达县| 酒泉市| 获嘉县| 大关县| 分宜县| 东阳市|