找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
查看: 23021|回復: 61
樓主
發(fā)表于 2025-3-21 17:55:09 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Graph Learning in Medical Imaging
編輯Daoqiang Zhang,Luping Zhou,Mingxia Liu
視頻videohttp://file.papertrans.cn/388/387929/387929.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: ;
出版日期Conference proceedings 2019
版次1
doihttps://doi.org/10.1007/978-3-030-35817-4
isbn_softcover978-3-030-35816-7
isbn_ebook978-3-030-35817-4Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
The information of publication is updating

書目名稱Graph Learning in Medical Imaging影響因子(影響力)




書目名稱Graph Learning in Medical Imaging影響因子(影響力)學科排名




書目名稱Graph Learning in Medical Imaging網(wǎng)絡公開度




書目名稱Graph Learning in Medical Imaging網(wǎng)絡公開度學科排名




書目名稱Graph Learning in Medical Imaging被引頻次




書目名稱Graph Learning in Medical Imaging被引頻次學科排名




書目名稱Graph Learning in Medical Imaging年度引用




書目名稱Graph Learning in Medical Imaging年度引用學科排名




書目名稱Graph Learning in Medical Imaging讀者反饋




書目名稱Graph Learning in Medical Imaging讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:31:35 | 只看該作者
https://doi.org/10.1007/978-3-322-85959-4and ultimately avoiding the use of atlases and any registration method. We evaluate DeepBundle using data from the Human Connectome Project. Experimental results demonstrate the advantages of DeepBundle and suggest that the geometric features extracted from each fiber tract can be used to effectively parcellate the fiber tracts.
板凳
發(fā)表于 2025-3-22 02:39:19 | 只看該作者
https://doi.org/10.1007/978-3-322-80069-5tion demonstrates that our model is implicitly consistent with the pixel-wise segmentation labels, which indicates our model can identify the region of interests without relying on the pixel-wise labels.
地板
發(fā)表于 2025-3-22 08:33:22 | 只看該作者
https://doi.org/10.1007/978-3-662-12498-7ew loss function that learns the geometrical relationships between the landmarks in the form of a root/leaf structure. We evaluate our approach on 49 CBCT scans of patients and achieve an average detection error of 1.75?±?0.91?mm. Experimental results show that our approach overperforms the related methods in the term of accuracy.
5#
發(fā)表于 2025-3-22 11:51:12 | 只看該作者
Versicherung und Risikoforschung10 was achieved for DDSM and 0.893 for BSSA. The results indicate that graph models can capture texture features capable of identifying masses located in dense tissues, and help improve computer-aided detection systems.
6#
發(fā)表于 2025-3-22 16:33:31 | 只看該作者
7#
發(fā)表于 2025-3-22 18:23:52 | 只看該作者
8#
發(fā)表于 2025-3-22 22:53:40 | 只看該作者
Weakly- and Semi-supervised Graph CNN for Identifying Basal Cell Carcinoma on Pathological Images,tion demonstrates that our model is implicitly consistent with the pixel-wise segmentation labels, which indicates our model can identify the region of interests without relying on the pixel-wise labels.
9#
發(fā)表于 2025-3-23 04:56:07 | 只看該作者
10#
發(fā)表于 2025-3-23 07:19:25 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 05:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
哈巴河县| 永兴县| 伊川县| 黎城县| 会泽县| 古田县| 格尔木市| 株洲县| 兴城市| 侯马市| 巴马| 峨眉山市| 青海省| 大英县| 高密市| 万荣县| 万宁市| 中阳县| 黄龙县| 哈尔滨市| 离岛区| 汝南县| 香河县| 府谷县| 望城县| 东兰县| 宜阳县| 隆安县| 遵化市| 怀宁县| 武隆县| 青河县| 乌拉特后旗| 乌鲁木齐县| 鄂州市| 米脂县| 蒲城县| 永清县| 赞皇县| 昌都县| 嘉义县|