找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Daidzein
21#
發(fā)表于 2025-3-25 04:02:19 | 只看該作者
https://doi.org/10.1007/978-3-658-13147-0igraph is bimodal if all its vertices are bimodal. Bimodality is at the heart of many types of graph layouts, such as upward drawings, level-planar drawings, and L-drawings. If the graph is not bimodal, the . problem asks for an embedding-preserving bimodal subgraph with the maximum number of edges.
22#
發(fā)表于 2025-3-25 11:02:59 | 只看該作者
23#
發(fā)表于 2025-3-25 11:55:27 | 只看該作者
24#
發(fā)表于 2025-3-25 19:01:39 | 只看該作者
Removing Popular Faces in?Curve Arrangementspuzzles, we investigate possibilities to eliminate the popular faces in an arrangement by inserting a single additional curve. This turns out to be .-hard; however, it becomes tractable when the number of popular faces is small: We present a probabilistic .-approach in the number of popular faces.
25#
發(fā)表于 2025-3-25 20:21:28 | 只看該作者
Different Types of?Isomorphisms of?Drawings of?Complete Multipartite Graphsntersects itself. We analyze several characteristics of simple drawings of complete multipartite graphs: which pairs of edges cross, in which order they cross, and the cyclic order around vertices and crossings, respectively. We consider all possible combinations of how two drawings can share some c
26#
發(fā)表于 2025-3-26 01:10:53 | 只看該作者
27#
發(fā)表于 2025-3-26 05:20:33 | 只看該作者
28#
發(fā)表于 2025-3-26 10:56:11 | 只看該作者
Parameterized Complexity of?Simultaneous Planarityut graph such that all drawings coincide on .. While . is still open for the case of two input graphs, the problem is NP-complete for .?[.]..In this work, we explore the parameterized complexity of .. We show that . is FPT with respect to . plus the vertex cover number or the feedback edge set numbe
29#
發(fā)表于 2025-3-26 14:54:13 | 只看該作者
The Parametrized Complexity of the Segment Numbermber of segments that can be achieved by any planar straight-line drawing of .. The . of . is the minimum number of lines that support all the edges of a planar straight-line drawing of .. Computing the segment number or the line cover number of a planar graph is .-complete and, thus, NP-hard. We st
30#
發(fā)表于 2025-3-26 19:14:17 | 只看該作者
A Schnyder-Type Drawing Algorithm for?5-Connected Triangulationsangulations. The combinatorial structures have three incarnations defined in terms of orientations, corner-labelings, and woods respectively. The wood incarnation consists in 5 spanning trees crossing each other in an orderly fashion. Similarly as for Schnyder woods on triangulations, it induces, fo
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 12:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
葵青区| 宾阳县| 扎赉特旗| 汾阳市| 连山| 出国| 临城县| 清水县| 枞阳县| 宣武区| 泰来县| 和林格尔县| 贡嘎县| 綦江县| 阿鲁科尔沁旗| 彰化县| 永吉县| 顺平县| 白朗县| 九台市| 奎屯市| 黄梅县| 乌兰县| 怀宁县| 平武县| 道真| 无极县| 阿合奇县| 翼城县| 特克斯县| 紫阳县| 那坡县| 蓬溪县| 东城区| 神池县| 道真| 盐津县| 苏州市| 屯留县| 北川| 蕉岭县|