找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Addendum
51#
發(fā)表于 2025-3-30 10:02:00 | 只看該作者
https://doi.org/10.1007/978-3-030-69399-2hat any thrackle of . vertices has at most 1.3984. edges. . are defined similarly, except that every pair of edges that do not share a vertex are allowed to cross an . number of times. It is also shown that the maximum number of edges of a quasi-thrackle on . vertices is ., and that this bound is be
52#
發(fā)表于 2025-3-30 15:17:42 | 只看該作者
53#
發(fā)表于 2025-3-30 19:36:07 | 只看該作者
https://doi.org/10.1007/978-3-031-19153-4tic disjoint rectangles parallel to the .-plane, and the edges are unobstructed .-parallel visibilities between pairs of rectangles. In addition, the constructed representation is such that there is a plane that intersects all the rectangles, and this intersection defines a bar 1-visibility representation of ..
54#
發(fā)表于 2025-3-30 22:37:41 | 只看該作者
55#
發(fā)表于 2025-3-31 04:24:19 | 只看該作者
https://doi.org/10.1007/978-3-030-69399-2hat any thrackle of . vertices has at most 1.3984. edges. . are defined similarly, except that every pair of edges that do not share a vertex are allowed to cross an . number of times. It is also shown that the maximum number of edges of a quasi-thrackle on . vertices is ., and that this bound is best possible for infinitely many values of ..
56#
發(fā)表于 2025-3-31 06:14:56 | 只看該作者
57#
發(fā)表于 2025-3-31 09:52:26 | 只看該作者
Many Touchings Force Many Crossingsdoes not get from one side of the second curve to its other side. Otherwise, if the two curves intersect, they are said to form a . pair. Let . and . denote the number of touching pairs and crossing pairs, respectively. We prove that ., provided that .. Apart from the values of the constants, this result is best possible.
58#
發(fā)表于 2025-3-31 15:13:36 | 只看該作者
59#
發(fā)表于 2025-3-31 19:44:51 | 只看該作者
60#
發(fā)表于 2025-4-1 01:30:08 | 只看該作者
Arrangements of Pseudocircles: Triangles and Drawings pairwise intersecting arrangements of pseudocircles, we show that .. This is essentially best possible because families of pairwise intersecting arrangements of . pseudocircles with . as . are known..The paper contains many drawings of arrangements of pseudocircles and a good fraction of these draw
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 06:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安吉县| 安平县| 遂川县| 涞源县| 富蕴县| 津南区| 阿图什市| 民和| 虞城县| 桐柏县| 龙门县| 高阳县| 安宁市| 五大连池市| 科技| 瑞昌市| 民丰县| 醴陵市| 高碑店市| 隆尧县| 天门市| 定边县| 武胜县| 湟中县| 余江县| 内江市| 香格里拉县| 德钦县| 滦南县| 明水县| 乐山市| 颍上县| 广安市| 湘潭市| 呼玛县| 马边| 亳州市| 绵竹市| 佛冈县| 临颍县| 临海市|