找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 手鐲
21#
發(fā)表于 2025-3-25 04:20:36 | 只看該作者
22#
發(fā)表于 2025-3-25 11:18:37 | 只看該作者
23#
發(fā)表于 2025-3-25 11:58:04 | 只看該作者
https://doi.org/10.1007/978-94-009-8733-3 of Lazard et al. [Theor. Comput. Sci. . (2019), 88–94] and, for any given constant ., we provide a 2-tree which does not admit a planar straight-line drawing with a ratio bounded by .. When the ratio is restricted to adjacent edges only, we prove that any 2-tree admits a planar straight-line drawin
24#
發(fā)表于 2025-3-25 18:16:20 | 只看該作者
25#
發(fā)表于 2025-3-26 00:04:29 | 只看該作者
26#
發(fā)表于 2025-3-26 01:49:47 | 只看該作者
https://doi.org/10.1007/978-981-15-7401-6ealizing . by a polygon can be seen as that of constructing a straight-line drawing of a graph with prescribed angles at vertices, and hence, it is a special case of the well studied problem of constructing an .. In 2D, we characterize sequences . for which every generic polygon . realizing . has at
27#
發(fā)表于 2025-3-26 05:46:04 | 只看該作者
https://doi.org/10.1007/978-1-349-07932-2that no two edges in the same stack cross and no two edges in the same queue nest. In 1992, Heath and Rosenberg conjectured that every planar graph admits a mixed 1-stack 1-queue layout. Recently, Pupyrev disproved this conjectured by demonstrating a planar partial 3-tree that does not admit a 1-sta
28#
發(fā)表于 2025-3-26 10:24:55 | 只看該作者
https://doi.org/10.1007/978-1-349-22259-9nt by a separation pair. We investigate the existence and the computation time of schematic representations of the structure of such a graph where the main component is drawn as a disk, the vertices that take part in separation pairs are points on the boundary of the disk, and the small components a
29#
發(fā)表于 2025-3-26 14:29:39 | 只看該作者
Hubert ?sterle,Rainer Riehm,Petra Voglerene transfer have occurred. Formally, a tree-based network . consists of a phylogenetic tree . (a rooted, binary, leaf-labeled tree) and so-called reticulation edges that span between edges of .. The network . is typically visualized by drawing . downward and planar and reticulation edges with one o
30#
發(fā)表于 2025-3-26 17:23:06 | 只看該作者
https://doi.org/10.1007/978-3-031-45147-8ia which have not yet been explicitly optimized in such fashion (e.g., vertex resolution, angular resolution, aspect ratio). We provide quantitative and qualitative evidence of the effectiveness of . with experimental data and a functional prototype: ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 23:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台州市| 常山县| 江源县| 凤山县| 翁牛特旗| 民县| 黄浦区| 翁牛特旗| 嘉黎县| 扎鲁特旗| 绿春县| 布尔津县| 兰坪| 襄樊市| 塘沽区| 平舆县| 手游| 泸西县| 山西省| 城固县| 铅山县| 城步| 长兴县| 普洱| 玛多县| 樟树市| 呈贡县| 肥乡县| 武清区| 射阳县| 临沂市| 桂林市| 景泰县| 陈巴尔虎旗| 秦皇岛市| 扎赉特旗| 东明县| 衡山县| 清水河县| 三河市| 杭锦后旗|