找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: Awkward
51#
發(fā)表于 2025-3-30 12:16:57 | 只看該作者
Circle-Representations of Simple 4-Regular Planar Graphsn and touching points of the circles. In this paper, (a)?we affirmatively answer Lovász’s conjecture, if . is 3-connected, and, (b)?we demonstrate an infinite class of connected 4-regular planar graphs which are not 3-connected and do not admit a realization as a system of circles.
52#
發(fā)表于 2025-3-30 13:22:18 | 只看該作者
53#
發(fā)表于 2025-3-30 16:32:51 | 只看該作者
54#
發(fā)表于 2025-3-30 23:00:38 | 只看該作者
Dwaipayan Sinha,Satarupa Dey,Anjana Singh drawing algorithm that computes (0,..)-rectangle of influence drawings of binary trees in area ., where .(..) is a logarithmic function that tends to infinity as .. tends to zero, and . is the number of vertices of the input tree.
55#
發(fā)表于 2025-3-31 04:39:10 | 只看該作者
56#
發(fā)表于 2025-3-31 05:19:46 | 只看該作者
57#
發(fā)表于 2025-3-31 09:44:49 | 只看該作者
58#
發(fā)表于 2025-3-31 16:00:10 | 只看該作者
Implementing a Partitioned 2-Page Book Embedding Testing Algorithmnt implementation of this algorithm and show its effectiveness by performing a number of experimental tests. Because of the relationships [13] between .2. and clustered planarity we yield as a side effect an implementation of a clustered planarity testing where the graph has exactly two clusters.
59#
發(fā)表于 2025-3-31 20:08:28 | 只看該作者
The Approximate Rectangle of Influence Drawability Problem drawing algorithm that computes (0,..)-rectangle of influence drawings of binary trees in area ., where .(..) is a logarithmic function that tends to infinity as .. tends to zero, and . is the number of vertices of the input tree.
60#
發(fā)表于 2025-4-1 01:19:01 | 只看該作者
On Representing Graphs by Touching Cuboids representation by unit cubes. We also describe algorithms that compute proper contact representations of varying size cubes for relevant graph families. Finally, we give two new simple proofs of a theorem by Thomassen stating that all planar graphs have a proper contact representation by touching cuboids.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 03:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
台东县| 海林市| 公主岭市| 炉霍县| 阜新| 扎囊县| 崇文区| 郑州市| 泸溪县| 石楼县| 东光县| 慈利县| 南康市| 巴马| 利辛县| 吉林市| 江门市| 内丘县| 景德镇市| 封丘县| 云和县| 天柱县| 大连市| 永泰县| 蒙阴县| 那曲县| 青海省| 新密市| 微山县| 仙桃市| 贵港市| 湛江市| 汉川市| 临朐县| 随州市| 长治县| 新乐市| 尚义县| 特克斯县| 高雄市| 杨浦区|