找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: Espionage
31#
發(fā)表于 2025-3-26 21:33:18 | 只看該作者
32#
發(fā)表于 2025-3-27 01:09:54 | 只看該作者
33#
發(fā)表于 2025-3-27 08:15:18 | 只看該作者
34#
發(fā)表于 2025-3-27 09:43:05 | 只看該作者
35#
發(fā)表于 2025-3-27 16:32:51 | 只看該作者
36#
發(fā)表于 2025-3-27 21:14:46 | 只看該作者
,Grid layouts of block diagrams — bounding the number of bends in each connection (extended abstractf the terminals on them is given as part of the input. We produce a block diagram, conforming to the input. The block diagram is on the rectilinear grid, and each edge (connection between modules) has few bends..For planar input, a linear-time algorithm is described to construct a planar drawing wit
37#
發(fā)表于 2025-3-27 23:26:24 | 只看該作者
On drawing a graph convexly in the plane (extended abstract),vex drawing of .. We obtain a necessary and sufficient condition for the existence and a linear algorithm for the construction of such an extension. Our results and their corollaries generalize previous theoretical and algorithmic results of Tutte, Thomassen, Chiba, Yamanouchi, and Nishizeki.
38#
發(fā)表于 2025-3-28 03:20:34 | 只看該作者
Regular edge labelings and drawings of planar graphs,used in solving several planar graph drawing problems, including ., and . problems. A regular edge labeling of a plane graph . labels the edges of . so that the edge labels around any vertex show certain regular pattern. The drawing of . is obtained by using the combinatorial structures resulting fr
39#
發(fā)表于 2025-3-28 09:33:28 | 只看該作者
Minimum-width grid drawings of plane graphs extend abstract,s, and the edges are drawn as straight-line segments between their endpoints. An additional objective is to minimize the size of the resulting grid. It is known that each plane graph can be drawn in such a way in a (.?2)×(.?2) grid (for .≥3), and that no grid smaller than (2./3?1)×(2./3?1) can be us
40#
發(fā)表于 2025-3-28 11:55:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 07:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
南宫市| 同德县| 常德市| 游戏| 三台县| 陈巴尔虎旗| 泽库县| 宜城市| 德州市| 临漳县| 辉县市| 北辰区| 通州市| 五大连池市| 合川市| 阿拉善左旗| 浦江县| 金阳县| 磐安县| 宁乡县| 丰宁| 浦东新区| 邢台市| 扬中市| 武定县| 张家港市| 民乐县| 高平市| 绥宁县| 页游| 吉林市| 九龙坡区| 成武县| 古浪县| 鹰潭市| 定结县| 门头沟区| 武穴市| 合水县| 文安县| 青阳县|