找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
51#
發(fā)表于 2025-3-30 08:20:02 | 只看該作者
52#
發(fā)表于 2025-3-30 15:40:30 | 只看該作者
Point-Set Embedding of Trees with Edge Constraintson . that includes the given partial drawing of .′. We concentrate on trees and show how to compute the output in .(.. log.) time and with at most 1?+?2 ?./2 ? bends per edge, where . is the number of vertices of the given subdrawing. We also prove that there are instances of the problem which require at least .???3 bends for some of the edges.
53#
發(fā)表于 2025-3-30 20:11:33 | 只看該作者
Representation of Planar Hypergraphs by Contacts of Triangles of those hypergraphs which are representable by contact of segments in the plane, We propose some possible generalization directions and open problems, related to the order dimension of the incidence posets of hypergraphs.
54#
發(fā)表于 2025-3-30 23:16:30 | 只看該作者
https://doi.org/10.1007/978-81-322-2598-0lgorithms for the case that seeds are points and covers are disks or triangles. We show that the problem becomes NP-hard if seeds and covers are disks. Concerning task?(b) we show that it is even NP-hard for point seeds and disk covers (given a fixed correspondence between vertices and seeds).
55#
發(fā)表于 2025-3-31 02:53:24 | 只看該作者
56#
發(fā)表于 2025-3-31 06:35:25 | 只看該作者
Crossing Number of Graphs with Rotation Systemsf multigraphs with rotation systems on a fixed number . of vertices. For .?=?1 and .?=?2 the crossing number can be computed in polynomial time and approximated to within a factor of 2 in linear time. For larger . we show how to approximate the crossing number to within a factor of . in time .(..) on a graph with . edges.
57#
發(fā)表于 2025-3-31 09:14:38 | 只看該作者
Characterization of Unlabeled Level Planar Graphse labelings. Our contributions are twofold. First, we provide linear time drawing algorithms for . graphs. Second, we provide a complete characterization of . graphs by showing that any other graph must contain a subgraph homeomorphic to one of seven forbidden graphs.
58#
發(fā)表于 2025-3-31 15:07:11 | 只看該作者
Moving Vertices to Make Drawings Planeow that . is NP-hard and hard to approximate. Second, we establish a connection to the graph-drawing problem ., which yields similar results for that problem. Third, we give bounds for the behavior of . on trees and general planar graphs.
59#
發(fā)表于 2025-3-31 19:50:11 | 只看該作者
60#
發(fā)表于 2025-3-31 23:58:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 08:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
林甸县| 怀仁县| 镶黄旗| 建始县| 远安县| 株洲县| 牙克石市| 石门县| 峡江县| 徐州市| 东海县| 阿合奇县| 滦平县| 吉木萨尔县| 中阳县| 同心县| 金阳县| 潜山县| 万州区| 北安市| 嘉禾县| 资源县| 武穴市| 溆浦县| 崇文区| 合作市| 禄劝| 八宿县| 贵港市| 岱山县| 安平县| 无棣县| 上杭县| 会东县| 福建省| 大余县| 莱州市| 石阡县| 明水县| 西充县| 米易县|