找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: 我沒有辱罵
11#
發(fā)表于 2025-3-23 11:54:25 | 只看該作者
Khem Chand Saini,Sanjeeva Nayaka,Felix BastWe prove that the crossing number of a graph decays in a “continuous fashion” in the following sense. For any .>?0 there is a .>?0 such that for . sufficiently large, every graph . with . vertices and .?≥?.. edges has a subgraph .′ of at most (1???.). edges and crossing number at least .. This generalizes the result of J. Fox and Cs. Tóth.
12#
發(fā)表于 2025-3-23 16:46:17 | 只看該作者
13#
發(fā)表于 2025-3-23 18:23:06 | 只看該作者
https://doi.org/10.1007/978-2-8178-0922-9We describe a practical method to test a leveled graph for level planarity and provide a level planar layout of the graph if the test succeeds, all in quadratic running-time. Embedding constraints restricting the order of incident edges around the vertices are allowed.
14#
發(fā)表于 2025-3-23 22:24:38 | 只看該作者
Computing Symmetries of Combinatorial ObjectsWe survey the practical aspects of computing the symmetries (automorphisms) of combinatorial objects. These include all manner of graphs with adornments, matrices, point sets, etc.. Since automorphisms are just isomorphisms from an object to itself, the problem is intimately related to that of finding isomorphisms between two objects.
15#
發(fā)表于 2025-3-24 05:00:38 | 只看該作者
16#
發(fā)表于 2025-3-24 08:57:48 | 只看該作者
17#
發(fā)表于 2025-3-24 13:07:04 | 只看該作者
Practical Level Planarity Testing and Layout with Embedding ConstraintsWe describe a practical method to test a leveled graph for level planarity and provide a level planar layout of the graph if the test succeeds, all in quadratic running-time. Embedding constraints restricting the order of incident edges around the vertices are allowed.
18#
發(fā)表于 2025-3-24 16:16:13 | 只看該作者
19#
發(fā)表于 2025-3-24 21:57:39 | 只看該作者
Crossing Number of Graphs with Rotation Systems Hliněny’s result, that computing the crossing number of a cubic graph (without rotation system) is .-complete. We also investigate the special case of multigraphs with rotation systems on a fixed number . of vertices. For .?=?1 and .?=?2 the crossing number can be computed in polynomial time and ap
20#
發(fā)表于 2025-3-24 23:56:29 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 03:11
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
许昌县| 林芝县| 会昌县| 彰化县| 镇康县| 鄂托克前旗| 平潭县| 大埔区| 玉林市| 凉山| 芜湖市| 内乡县| 肇东市| 望谟县| 商河县| 镇坪县| 沭阳县| 洪洞县| 义乌市| 湖北省| 怀宁县| 舞钢市| 怀安县| 兰考县| 土默特右旗| 门头沟区| 安仁县| 巧家县| 额敏县| 香港| 塘沽区| 湖州市| 诸城市| 辰溪县| 江油市| 巩义市| 淮北市| 辛集市| 汝城县| 松桃| 咸丰县|