找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 撕成碎片
41#
發(fā)表于 2025-3-28 14:52:35 | 只看該作者
42#
發(fā)表于 2025-3-28 19:18:56 | 只看該作者
J. A. Rubiolo,L. M. Botana,P. Martínez segments between points of .. It is known that, for any fixed ., any geometric graph . on n vertices with no . pairwise crossing edges contains at most .(. log .) edges. In this paper we give a new, simpler proof of this bound, and show that the same bound holds also when the edges of . are represe
43#
發(fā)表于 2025-3-29 00:12:47 | 只看該作者
44#
發(fā)表于 2025-3-29 03:43:38 | 只看該作者
A polyhedral approach to the multi-layer crossing minimization problem,f the multi-layer crossing minimization problem, we examine the 2-layer case and derive several classes of facets of the associated polytope. Preliminary computational results for 2- and 3-layer instances indicate, that the usage of the corresponding facet-defining inequalities in a branch-and-cut a
45#
發(fā)表于 2025-3-29 09:32:39 | 只看該作者
On embedding an outer-planar graph in a point set,ght-line embedding of . in ., improving upon the algorithm in [GMPP91, CU96] that requires .(..) time. Our algorithm is near-optimal as there is an .(. log .) lower bound for the problem [BMS95]. We present a simpler .(.) time and .(.) space algorithm to compute a straight-line embedding of . in . w
46#
發(fā)表于 2025-3-29 13:05:09 | 只看該作者
Three-dimensional grid drawings of graphs, of . are pairwise non-crossing. It is shown that for any fixed . ≥ 2, every .-colorable graph of . vertices has a three-dimensional grid drawing that fits into a box of volume .(..). The order of magnitude of this bound cannot be improved.
47#
發(fā)表于 2025-3-29 16:00:06 | 只看該作者
48#
發(fā)表于 2025-3-29 21:02:00 | 只看該作者
49#
發(fā)表于 2025-3-30 01:42:40 | 只看該作者
50#
發(fā)表于 2025-3-30 08:02:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 11:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
嫩江县| 平果县| 古蔺县| 高唐县| 无棣县| 德庆县| 周至县| 金山区| 成武县| 阳信县| 舞钢市| 萨迦县| 钟山县| 乌拉特中旗| 深圳市| 交城县| 福清市| 昌宁县| 酒泉市| 四川省| 福泉市| 孟连| 新沂市| 高台县| 松阳县| 大田县| 黑水县| 民勤县| 噶尔县| 永胜县| 叶城县| 宜兰市| 化德县| 崇义县| 枝江市| 郴州市| 武城县| 厦门市| 沾益县| 江达县| 光山县|