找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-26 23:44:36 | 只看該作者
Barycentric Drawings of Periodic Graphsh, are unique up to affine transformations, and provide a versatile tool not only in drawing, but also in computation. Example applications include symmetric convex drawing in dimension 2 as well as determining topological types of crystals and computing their ideal symmetry groups.
32#
發(fā)表于 2025-3-27 01:44:01 | 只看該作者
Three-Dimensional Grid Drawings with Sub-quadratic Volumegments representing the edges are pairwise non-crossing. A . volume bound is proved for three-dimensional grid drawings of graphs with bounded degree, graphs with bounded genus, and graphs with no bounded complete graph as a minor. The previous best bound for these graph families was .. These result
33#
發(fā)表于 2025-3-27 05:30:49 | 只看該作者
34#
發(fā)表于 2025-3-27 12:36:50 | 只看該作者
35#
發(fā)表于 2025-3-27 13:48:57 | 只看該作者
F. Bastida,T. Hernandez,C. Garcia most successful framework for crossing minimization. We study the effects of various methods for computing a maximal planar subgraph and for edge re-insertion including post-processing and randomization.
36#
發(fā)表于 2025-3-27 20:27:41 | 只看該作者
37#
發(fā)表于 2025-3-27 22:56:00 | 只看該作者
38#
發(fā)表于 2025-3-28 05:22:10 | 只看該作者
39#
發(fā)表于 2025-3-28 07:48:29 | 只看該作者
R. R. Sargsyan,A. Tsurykau,Hovik Panosyan, interval graphs, circle graphs, circular-arc graphs and chordal graphs. We consider the question how complicated need to be the polygons in a polygon-circle representation of a graph..Let cmp (.) denote the minimum . such that every polygon-circle graph on . vertices is the intersection graph of .
40#
發(fā)表于 2025-3-28 14:01:46 | 只看該作者
Microbial Adhesion and Aggregationts connecting the appropriate points. A noncrossing Hamiltonian path in a geometric graph is a Hamiltonian path which does not contain any intersecting pair of edges. In the paper, we study a problem asked by Micha Perles: Determine a function ., where .(.) is the largest number . such that when we
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 00:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
遂溪县| 德安县| 廉江市| 衢州市| 靖安县| 广宁县| 桑日县| 漾濞| 海晏县| 安宁市| 呼图壁县| 南华县| 平阴县| 克拉玛依市| 通辽市| 延边| 日照市| 五原县| 北安市| 永平县| 鄱阳县| 孟州市| 金昌市| 郎溪县| 岳池县| 尉犁县| 龙泉市| 仁怀市| 乡宁县| 舟山市| 高碑店市| 新密市| 从江县| 霍州市| 高唐县| 平乡县| 泰州市| 彭山县| 和田市| 油尖旺区| 余江县|