找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 召集會議
31#
發(fā)表于 2025-3-26 23:44:36 | 只看該作者
Barycentric Drawings of Periodic Graphsh, are unique up to affine transformations, and provide a versatile tool not only in drawing, but also in computation. Example applications include symmetric convex drawing in dimension 2 as well as determining topological types of crystals and computing their ideal symmetry groups.
32#
發(fā)表于 2025-3-27 01:44:01 | 只看該作者
Three-Dimensional Grid Drawings with Sub-quadratic Volumegments representing the edges are pairwise non-crossing. A . volume bound is proved for three-dimensional grid drawings of graphs with bounded degree, graphs with bounded genus, and graphs with no bounded complete graph as a minor. The previous best bound for these graph families was .. These result
33#
發(fā)表于 2025-3-27 05:30:49 | 只看該作者
34#
發(fā)表于 2025-3-27 12:36:50 | 只看該作者
35#
發(fā)表于 2025-3-27 13:48:57 | 只看該作者
F. Bastida,T. Hernandez,C. Garcia most successful framework for crossing minimization. We study the effects of various methods for computing a maximal planar subgraph and for edge re-insertion including post-processing and randomization.
36#
發(fā)表于 2025-3-27 20:27:41 | 只看該作者
37#
發(fā)表于 2025-3-27 22:56:00 | 只看該作者
38#
發(fā)表于 2025-3-28 05:22:10 | 只看該作者
39#
發(fā)表于 2025-3-28 07:48:29 | 只看該作者
R. R. Sargsyan,A. Tsurykau,Hovik Panosyan, interval graphs, circle graphs, circular-arc graphs and chordal graphs. We consider the question how complicated need to be the polygons in a polygon-circle representation of a graph..Let cmp (.) denote the minimum . such that every polygon-circle graph on . vertices is the intersection graph of .
40#
發(fā)表于 2025-3-28 14:01:46 | 只看該作者
Microbial Adhesion and Aggregationts connecting the appropriate points. A noncrossing Hamiltonian path in a geometric graph is a Hamiltonian path which does not contain any intersecting pair of edges. In the paper, we study a problem asked by Micha Perles: Determine a function ., where .(.) is the largest number . such that when we
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 04:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
溆浦县| 讷河市| 辛集市| 来安县| 临海市| 萝北县| 平阳县| 芜湖市| 永新县| 泽库县| 秭归县| 福海县| 湖南省| 哈巴河县| 兰州市| 扶绥县| 赞皇县| 东山县| 贺州市| 岗巴县| 怀仁县| 崇义县| 麻城市| 台中市| 黎城县| 延吉市| 卢氏县| 正安县| 阜康市| 新营市| 焦作市| 祁东县| 克什克腾旗| 西乌珠穆沁旗| 深水埗区| 宁武县| 高平市| 信宜市| 茶陵县| 霞浦县| 怀柔区|