找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
查看: 7961|回復(fù): 53
樓主
發(fā)表于 2025-3-21 16:07:34 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Graph Colouring and the Probabilistic Method
編輯Michael Molloy,Bruce Reed
視頻videohttp://file.papertrans.cn/388/387887/387887.mp4
叢書名稱Algorithms and Combinatorics
圖書封面Titlebook: ;
出版日期Book 2002
版次1
doihttps://doi.org/10.1007/978-3-642-04016-0
isbn_ebook978-3-642-04016-0Series ISSN 0937-5511 Series E-ISSN 2197-6783
issn_series 0937-5511
The information of publication is updating

書目名稱Graph Colouring and the Probabilistic Method影響因子(影響力)




書目名稱Graph Colouring and the Probabilistic Method影響因子(影響力)學(xué)科排名




書目名稱Graph Colouring and the Probabilistic Method網(wǎng)絡(luò)公開度




書目名稱Graph Colouring and the Probabilistic Method網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Graph Colouring and the Probabilistic Method被引頻次




書目名稱Graph Colouring and the Probabilistic Method被引頻次學(xué)科排名




書目名稱Graph Colouring and the Probabilistic Method年度引用




書目名稱Graph Colouring and the Probabilistic Method年度引用學(xué)科排名




書目名稱Graph Colouring and the Probabilistic Method讀者反饋




書目名稱Graph Colouring and the Probabilistic Method讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:45:46 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:07:50 | 只看該作者
The Extraperitoneal Pelvic Compartments,In this chapter we present a second application of an iterative variant of the Naive Colouring Procedure: Kahn’s proof that the List Colouring Conjecture is asymptotically correct, i.e. that for any graph . of maximum degree ., ..(.) = . + .(.) [89].
地板
發(fā)表于 2025-3-22 06:10:03 | 只看該作者
The First Moment MethodIn this chapter, we introduce the First Moment Method., which is the most fundamental tool of the probabilistic method. The essence of the first moment method can be summarized in this simple and surprisingly powerful statement:
5#
發(fā)表于 2025-3-22 08:58:35 | 只看該作者
The Lovász Local LemmaIn this chapter, we introduce one of the most powerful tools of the probabilistic method: The Lovász Local Lemma. We present the Local Lemma by reconsidering the problem of 2-colouring a hypergraph.
6#
發(fā)表于 2025-3-22 14:11:04 | 只看該作者
The List Colouring ConjectureIn this chapter we present a second application of an iterative variant of the Naive Colouring Procedure: Kahn’s proof that the List Colouring Conjecture is asymptotically correct, i.e. that for any graph . of maximum degree ., ..(.) = . + .(.) [89].
7#
發(fā)表于 2025-3-22 19:01:56 | 只看該作者
Graph Colouring and the Probabilistic Method978-3-642-04016-0Series ISSN 0937-5511 Series E-ISSN 2197-6783
8#
發(fā)表于 2025-3-22 23:58:02 | 只看該作者
Sexual and Physical Violent Victimization,igh probability. When this is the case, we say that . is .. In this book, we will see a number of tools for proving that a random variable is concentrated, including Talagrand’s Inequality and Azuma’s Inequality. In this chapter, we begin with the simplest such tool, the Chernoff Bound.
9#
發(fā)表于 2025-3-23 02:21:57 | 只看該作者
10#
發(fā)表于 2025-3-23 08:24:43 | 只看該作者
https://doi.org/10.1007/978-1-4419-1078-3ct with it. We then obtained a total colouring by modifying the edge colouring so as to eliminate the conflicts. In this chapter, we take the opposite approach, first choosing a vertex colouring and then choosing an edge colouring which does not conflict . with the vertex colouring, thereby obtaining a total colouring.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 10:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台北市| 靖州| 三穗县| 家居| 灌阳县| 屏山县| 南靖县| 龙岩市| 南投市| 福清市| 巴楚县| 天门市| 绥阳县| 昌平区| 仙居县| 新泰市| 屏山县| 特克斯县| 长垣县| 稻城县| 综艺| 天气| 西盟| 武邑县| 鱼台县| 尉氏县| 日土县| 安西县| 安国市| 宁晋县| 上饶县| 郑州市| 武陟县| 广灵县| 岐山县| 武汉市| 张家口市| 呼图壁县| 平塘县| 庐江县| 岫岩|