找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: SPIR
21#
發(fā)表于 2025-3-25 05:14:31 | 只看該作者
Transport Around Steady Simple Shear Flow in Dilute Granular Gases, of the Boltzmann kinetic equation through first-order in the deviations of the hydrodynamic fields with respect to their values in the (unperturbed) non-Newtonian shear flow state. Given that the reference state (zeroth-order approximation in the Chapman–Enskog-like expansion) applies to arbitrary
22#
發(fā)表于 2025-3-25 11:07:08 | 只看該作者
23#
發(fā)表于 2025-3-25 15:31:24 | 只看該作者
24#
發(fā)表于 2025-3-25 19:05:56 | 只看該作者
https://doi.org/10.1007/978-3-662-41551-1at low and moderate densities. We briefly review first the dynamics of binary collisions for some of the models most widely used in the literature, and then we outline heuristically the derivation of the Boltzmann and Enskog kinetic equations for monocomponent granular gases. A connection with hydro
25#
發(fā)表于 2025-3-25 23:11:26 | 只看該作者
26#
發(fā)表于 2025-3-26 03:33:20 | 只看該作者
27#
發(fā)表于 2025-3-26 06:58:09 | 只看該作者
28#
發(fā)表于 2025-3-26 12:32:18 | 只看該作者
https://doi.org/10.1007/978-3-0348-5736-9h monocomponent systems, an analysis is performed to first-order in spatial gradients. The Navier–Stokes transport coefficients and the first-order contribution to the cooling rate are obtained in terms of the solution to a set of coupled linear integral equations. These equations are approximately
29#
發(fā)表于 2025-3-26 16:19:23 | 只看該作者
30#
發(fā)表于 2025-3-26 18:07:33 | 只看該作者
https://doi.org/10.1007/978-3-7091-7869-0 the well-known simple or uniform shear flow where a granular gas under constant shear rate and uniform temperature and density supports a steady state. In this state, collisional cooling compensates locally for viscous heating, hence the viscosity function and the two viscometric functions are nonl
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 12:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
名山县| 玛纳斯县| 丹凤县| 乐平市| 新泰市| 临城县| 东台市| 闽侯县| 怀柔区| 临汾市| 广丰县| 福鼎市| 神池县| 清水县| 景德镇市| 海林市| 永吉县| 微山县| 于都县| 乌苏市| 鄢陵县| 溧水县| 金沙县| 德化县| 湟中县| 夏邑县| 肃宁县| 南康市| 仪征市| 比如县| 扬州市| 双城市| 娄底市| 台南市| 高安市| 惠来县| 彭阳县| 芮城县| 巴林右旗| 奉新县| 林周县|