找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
查看: 48503|回復(fù): 40
樓主
發(fā)表于 2025-3-21 19:32:29 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Granular Computing Based Machine Learning
編輯Han Liu,Mihaela Cocea
視頻videohttp://file.papertrans.cn/388/387855/387855.mp4
叢書名稱Studies in Big Data
圖書封面Titlebook: ;
出版日期Book 2018
版次1
doihttps://doi.org/10.1007/978-3-319-70058-8
isbn_softcover978-3-319-88884-2
isbn_ebook978-3-319-70058-8Series ISSN 2197-6503 Series E-ISSN 2197-6511
issn_series 2197-6503
The information of publication is updating

書目名稱Granular Computing Based Machine Learning影響因子(影響力)




書目名稱Granular Computing Based Machine Learning影響因子(影響力)學(xué)科排名




書目名稱Granular Computing Based Machine Learning網(wǎng)絡(luò)公開度




書目名稱Granular Computing Based Machine Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Granular Computing Based Machine Learning被引頻次




書目名稱Granular Computing Based Machine Learning被引頻次學(xué)科排名




書目名稱Granular Computing Based Machine Learning年度引用




書目名稱Granular Computing Based Machine Learning年度引用學(xué)科排名




書目名稱Granular Computing Based Machine Learning讀者反饋




書目名稱Granular Computing Based Machine Learning讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:00:45 | 只看該作者
Conclusion,granular computing based machine learning is inspired philosophically from real-life examples. Moreover, we suggest some further directions to extend the current research towards advancing machine learning in the future.
板凳
發(fā)表于 2025-3-22 03:51:27 | 只看該作者
Granular Computing Based Machine Learning978-3-319-70058-8Series ISSN 2197-6503 Series E-ISSN 2197-6511
地板
發(fā)表于 2025-3-22 07:14:15 | 只看該作者
https://doi.org/10.1007/978-3-658-40438-3ncepts of traditional data science are then explored to show the value of data. Furthermore, the concepts of machine learning and granular computing are provided in the context of intelligent data processing. Finally, the main contents of each of the following chapters are outlined.
5#
發(fā)表于 2025-3-22 10:57:15 | 只看該作者
Metaverse: Concept, Content and Contexttic learning, discriminative learning, single-task learning and random data partitioning. We also identify general issues of traditional machine learning, and discuss how traditional learning approaches can be impacted due to the presence of big data.
6#
發(fā)表于 2025-3-22 13:57:55 | 只看該作者
7#
發(fā)表于 2025-3-22 18:56:35 | 只看該作者
8#
發(fā)表于 2025-3-23 00:42:32 | 只看該作者
9#
發(fā)表于 2025-3-23 04:28:13 | 只看該作者
Peter Clark,Martin Best,Aurore Porsonf veracity and variability, respectively. In the sentiment analysis case study, we show the performance of fuzzy approaches on movie reviews data, in comparison with other commonly used non-fuzzy approaches.
10#
發(fā)表于 2025-3-23 07:35:22 | 只看該作者
Introduction,ncepts of traditional data science are then explored to show the value of data. Furthermore, the concepts of machine learning and granular computing are provided in the context of intelligent data processing. Finally, the main contents of each of the following chapters are outlined.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 09:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
思南县| 文化| 民和| 罗田县| 凌源市| 牙克石市| 常宁市| 中宁县| 定结县| 徐汇区| 外汇| 泰宁县| 呈贡县| 五寨县| 盐亭县| 正镶白旗| 渝中区| 乌拉特中旗| 大宁县| 临泉县| 临海市| 青州市| 孟州市| 泰和县| 平原县| 新邵县| 孟州市| 景德镇市| 慈利县| 宁阳县| 惠安县| 阿拉善盟| 衡水市| 乐亭县| 乌鲁木齐县| 诸城市| 太谷县| 海兴县| 博野县| 遵义县| 陇西县|