找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
51#
發(fā)表于 2025-3-30 12:06:04 | 只看該作者
52#
發(fā)表于 2025-3-30 14:50:22 | 只看該作者
Iterated Transductions and Efficient Learning from Positive Data: A Unifying View,ficiently learnable in the limit from positive data. Furthermore, the set contains the class of .-reversible languages and the class of .-locally testable languages in the strict sense just as example language classes. This paper also proposes a framework for defining language classes based on itera
53#
發(fā)表于 2025-3-30 18:36:13 | 只看該作者
54#
發(fā)表于 2025-3-31 00:18:07 | 只看該作者
Combination of Estimation Algorithms and Grammatical Inference Techniques to Learn Stochastic Conteaximize a certain criterion function from a training sample by using gradient descendent techniques. In this optimization process, the obtaining of the initial SCFGs is an important factor, given that it affects the convergence process and the maximum which can be achieved. Here, we show experimenta
55#
發(fā)表于 2025-3-31 02:15:28 | 只看該作者
On the Relationship between Models for Learning in Helpful Environments,nd in the PAC learning framework (concept classes such as . (DFA) are not efficiently learnable in the PAC model). The PAC model’s requirement of learnability under all conceivable distributions could be considered too stringent a restriction for practical applications. Several models for learning i
56#
發(fā)表于 2025-3-31 05:41:31 | 只看該作者
57#
發(fā)表于 2025-3-31 11:23:33 | 只看該作者
58#
發(fā)表于 2025-3-31 13:39:46 | 只看該作者
59#
發(fā)表于 2025-3-31 20:03:00 | 只看該作者
60#
發(fā)表于 2025-3-31 21:43:20 | 只看該作者
https://doi.org/10.1007/978-1-349-16692-3s of internal contextual languages, namely, k-uniform and strictly internal contextual languages which are incomparable classes and provide an algorithm to learn these classes. The algorithm can be used when the rules are applied in a parallel mode.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 08:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
教育| 印江| 朝阳区| 喀喇| 宁夏| 芮城县| 永丰县| 滕州市| 淮北市| 陇川县| 崇左市| 宁河县| 罗江县| 海城市| 盐源县| 容城县| 上饶市| 孟津县| 买车| 合阳县| 黄浦区| 靖西县| 中西区| 衡阳县| 罗城| 盐城市| 大厂| 任丘市| 江山市| 双流县| 泾川县| 景东| 淮安市| 左云县| 虹口区| 勃利县| 闽清县| 阜宁县| 高阳县| 冕宁县| 东明县|