找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Global Stability of Dynamical Systems; Michael Shub Book 1987 Springer-Verlag Berlin Heidelberg 1987 dynamical systems.manifold.stability

[復制鏈接]
樓主: False-Negative
11#
發(fā)表于 2025-3-23 11:09:37 | 只看該作者
The Moral Crisis in Special Education,We have begun to study hyperbolic invariant sets. Before we continue we must generalize our definitions in the case of a fixed point, to allow us to work in an arbitrary Banach space.
12#
發(fā)表于 2025-3-23 14:56:25 | 只看該作者
https://doi.org/10.1007/978-3-031-29735-9Next, we will generalize to more complicated hyperbolic sets, such as the horseshoe or a solenoid, the theory we have developed for a periodic point.
13#
發(fā)表于 2025-3-23 19:52:40 | 只看該作者
https://doi.org/10.1007/978-1-137-45665-6Consider two submanifolds . and . of . which intersect at a point .. We say that . and . are transverse at ., ..., or that . is a . of . and ., if ..
14#
發(fā)表于 2025-3-24 01:16:55 | 只看該作者
https://doi.org/10.1007/978-981-97-0009-7Let . and . be two topological spaces and .: . → . and .: . → . two continuous maps.
15#
發(fā)表于 2025-3-24 03:30:36 | 只看該作者
16#
發(fā)表于 2025-3-24 09:54:33 | 只看該作者
,Sexual Betrayal in “Penelope”,Our last major result will be counting the periodic points in a hyperbolic set with local product structure; we will carry this out using the important technique of symbolic dynamics.
17#
發(fā)表于 2025-3-24 13:07:29 | 只看該作者
18#
發(fā)表于 2025-3-24 16:26:39 | 只看該作者
Sequences of Filtrations,Let .: ?=.. ? ··· ? .., = M and .: ?=.. ? ··· ? .. = . be two filtrations of .. We say that . refines . if and only if for all . = 0,..., . ? 1, there is a ., 0 ≤ . ≤ . ? 1 such that (... ? ..) ? (... ? ..).
19#
發(fā)表于 2025-3-24 20:48:07 | 只看該作者
20#
發(fā)表于 2025-3-25 01:29:56 | 只看該作者
Stable Manifolds,We have begun to study hyperbolic invariant sets. Before we continue we must generalize our definitions in the case of a fixed point, to allow us to work in an arbitrary Banach space.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 00:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
礼泉县| 井研县| 都江堰市| 二连浩特市| 汕头市| 环江| 洪江市| 隆安县| 古交市| 丰原市| 齐齐哈尔市| 罗江县| 呼玛县| 西畴县| 武邑县| 宜都市| 兴海县| 阿城市| 岳阳县| 宾川县| 车致| 上杭县| 象州县| 桃园市| 本溪| 徐州市| 上饶市| 泸州市| 南川市| 元阳县| 日喀则市| 股票| 西青区| 庄河市| 苏州市| 阿合奇县| 墨竹工卡县| 台南市| 霍林郭勒市| 聊城市| 固始县|