找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Global Optimization with Non-Convex Constraints; Sequential and Paral Roman G. Strongin,Yaroslav D. Sergeyev Book 2000 Springer Science+Bus

[復(fù)制鏈接]
樓主: 退縮
21#
發(fā)表于 2025-3-25 06:48:13 | 只看該作者
22#
發(fā)表于 2025-3-25 09:42:23 | 只看該作者
Introduction to Drug Metabolisming in optimal design of technical systems (see e.g., Batishchev (1975), Kasnoshchekov, Petrov and Fiodorov (1986)), in conditions of uncertainty (see e.g., Zhukovskii and Molostvov (1990)), in classical problems of identifying parameters of a model to match the experimental data, etc. (see also e.g
23#
發(fā)表于 2025-3-25 13:52:28 | 只看該作者
Modal auxiliaries. Verb plus infinitive,s the .-dimensional Euclidean space and the .(.) (henceforth denoted ...(.)) and the left-hand sides ..(.) 1 ≤ . ≤ ., of the constraints are . with respective constants .., 1 ≤ . ≤ . + 1, i.e., for any two points .′ .″ ∈ . it is true that . 1 ≤ . ≤ . + 1. Note that (8.1.1) is the obvious generalizat
24#
發(fā)表于 2025-3-25 16:10:42 | 只看該作者
25#
發(fā)表于 2025-3-25 21:31:23 | 只看該作者
Global Optimization Algorithms as Statistical Decision Procedures — The Information Approachded by the uniform grid technique (1.1.13)–(1.1.15) for some specified number . of trials. This assumption, which is quite natural due to the relation (1.1.17), reduces the continuous problem (2.1.1) to the discrete problem of finding the node .. of the uniform grid ., satisfying the inequalities .,
26#
發(fā)表于 2025-3-26 02:45:51 | 只看該作者
27#
發(fā)表于 2025-3-26 04:28:11 | 只看該作者
Global Optimization Methods as Bounding Procedures — The Geometric Approach been mentioned in Chapter 1, this problem has been intensively studied by many authors. In this book, on a level with the information approach presented in the previous Chapters, we discuss the geometric approach for solving the problem (2.1.1). We pay great attention to the ideas of an adaptive es
28#
發(fā)表于 2025-3-26 09:50:23 | 只看該作者
29#
發(fā)表于 2025-3-26 13:14:53 | 只看該作者
30#
發(fā)表于 2025-3-26 19:43:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 20:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临桂县| 登封市| 宁河县| 台东县| 廉江市| 毕节市| 洛宁县| 泊头市| 怀宁县| 湘乡市| 雅安市| 阳春市| 三门峡市| 合川市| 平昌县| 昭平县| 工布江达县| 阿合奇县| 乐至县| 双辽市| 陇西县| 汕尾市| 香河县| 临澧县| 安国市| 田阳县| 察哈| 建平县| 县级市| 长葛市| 祁连县| 平顺县| 屯昌县| 南川市| 库尔勒市| 婺源县| 清镇市| 石景山区| 治县。| 邛崃市| 伊宁市|