找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Global Optimization; Deterministic Approa Reiner Horst,Hoang Tuy Book 19901st edition Springer-Verlag Berlin Heidelberg 1990 Decision Theor

[復(fù)制鏈接]
樓主: 氣泡
21#
發(fā)表于 2025-3-25 06:36:18 | 只看該作者
Successive Partition MethodsThis chapter is devoted to a class of methods for concave minimization which investigate the feasible domain by dividing it into smaller pieces and refining the partition as needed (successive partition methods, branch and bound).
22#
發(fā)表于 2025-3-25 08:35:39 | 只看該作者
23#
發(fā)表于 2025-3-25 13:14:37 | 只看該作者
24#
發(fā)表于 2025-3-25 19:18:56 | 只看該作者
Stephen A. Krawetz,David D. Wombleart involving most of the variables of the problem, and a concave part involving only a relatively small number of variables. More precisely, these problems have the form.where f: ?. → ? is a concave function, Ω is a polyhedron, d and y are vectors in ?., and n is generally much smaller than h.
25#
發(fā)表于 2025-3-25 21:23:20 | 只看該作者
Some Important Classes of Global Optimization Problemsgramming, and Lipschitz optimization. Some basic properties of these problems and various applications are discussed. It is also shown that very general systems of equalities and (or) inequalities can be formulated as global optimization problems.
26#
發(fā)表于 2025-3-26 02:20:55 | 只看該作者
27#
發(fā)表于 2025-3-26 06:51:59 | 只看該作者
28#
發(fā)表于 2025-3-26 12:16:07 | 只看該作者
em of inequalities. It is well known that in practically all disciplines where mathematical models are used there are many real-world problems which can be formulated as multi extremal global optimization problems.978-3-662-02598-7
29#
發(fā)表于 2025-3-26 15:46:38 | 只看該作者
30#
發(fā)表于 2025-3-26 17:56:25 | 只看該作者
Concavity Cutsrned with using cuts in a “.” manner: typically, cuts were generated in such a way that no feasible point of the problem is excluded and the intersection of all the cuts contains the whole feasible region. This technique is most successful when the feasible region is a convex set, so that supporting
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 08:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武夷山市| 长顺县| 苏尼特右旗| 枣庄市| 镇远县| 休宁县| 永吉县| 景宁| 湖北省| 炉霍县| 九江县| 西藏| 合阳县| 铜山县| 沁阳市| 昂仁县| 汾阳市| 白水县| 玉田县| 梅河口市| 和硕县| 南昌县| 谢通门县| 泌阳县| 渭源县| 交口县| 辽宁省| 揭西县| 宜君县| 克拉玛依市| 宜川县| 东乡族自治县| 都兰县| 芒康县| 木里| 苏尼特右旗| 京山县| 达州市| 克拉玛依市| 简阳市| 浦北县|