找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Global Optimization; Deterministic Approa Reiner Horst,Hoang Tuy Book 19901st edition Springer-Verlag Berlin Heidelberg 1990 Decision Theor

[復(fù)制鏈接]
樓主: 氣泡
21#
發(fā)表于 2025-3-25 06:36:18 | 只看該作者
Successive Partition MethodsThis chapter is devoted to a class of methods for concave minimization which investigate the feasible domain by dividing it into smaller pieces and refining the partition as needed (successive partition methods, branch and bound).
22#
發(fā)表于 2025-3-25 08:35:39 | 只看該作者
23#
發(fā)表于 2025-3-25 13:14:37 | 只看該作者
24#
發(fā)表于 2025-3-25 19:18:56 | 只看該作者
Stephen A. Krawetz,David D. Wombleart involving most of the variables of the problem, and a concave part involving only a relatively small number of variables. More precisely, these problems have the form.where f: ?. → ? is a concave function, Ω is a polyhedron, d and y are vectors in ?., and n is generally much smaller than h.
25#
發(fā)表于 2025-3-25 21:23:20 | 只看該作者
Some Important Classes of Global Optimization Problemsgramming, and Lipschitz optimization. Some basic properties of these problems and various applications are discussed. It is also shown that very general systems of equalities and (or) inequalities can be formulated as global optimization problems.
26#
發(fā)表于 2025-3-26 02:20:55 | 只看該作者
27#
發(fā)表于 2025-3-26 06:51:59 | 只看該作者
28#
發(fā)表于 2025-3-26 12:16:07 | 只看該作者
em of inequalities. It is well known that in practically all disciplines where mathematical models are used there are many real-world problems which can be formulated as multi extremal global optimization problems.978-3-662-02598-7
29#
發(fā)表于 2025-3-26 15:46:38 | 只看該作者
30#
發(fā)表于 2025-3-26 17:56:25 | 只看該作者
Concavity Cutsrned with using cuts in a “.” manner: typically, cuts were generated in such a way that no feasible point of the problem is excluded and the intersection of all the cuts contains the whole feasible region. This technique is most successful when the feasible region is a convex set, so that supporting
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 16:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
崇阳县| 梁河县| 石阡县| 宽甸| 余姚市| 河北省| 四川省| 井研县| 札达县| 瑞丽市| 开鲁县| 特克斯县| 大城县| 同德县| 大余县| 永吉县| 习水县| 百色市| 卢湾区| 通河县| 河北区| 元谋县| 永州市| 左权县| 新丰县| 瓦房店市| 凤冈县| 清涧县| 雷波县| 定南县| 施甸县| 安义县| 海晏县| 云浮市| 承德市| 横峰县| 和田市| 镇江市| 南丹县| 临颍县| 岳普湖县|