找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Global Differential Geometry and Global Analysis; Proceedings of a Con Dirk Ferus,Ulrich Pinkall,Berd Wegner Conference proceedings 1991 Sp

[復制鏈接]
樓主: 誤解
11#
發(fā)表于 2025-3-23 10:54:10 | 只看該作者
12#
發(fā)表于 2025-3-23 14:11:59 | 只看該作者
A maximum principle at infinity and the topology of complete embedded surfaces with constant mean c
13#
發(fā)表于 2025-3-23 21:15:03 | 只看該作者
On Submanifolds with parallel higher order fundamental form in euclidean spaces,
14#
發(fā)表于 2025-3-24 00:33:59 | 只看該作者
15#
發(fā)表于 2025-3-24 04:54:48 | 只看該作者
Transversal curvature and tautness for riemannian foliations,
16#
發(fā)表于 2025-3-24 08:02:46 | 只看該作者
,Schr?dinger operators associated to a holomorphic map,
17#
發(fā)表于 2025-3-24 12:25:41 | 只看該作者
Generic existence of morse functions on infinite dimensional riemannian manifolds and applications,
18#
發(fā)表于 2025-3-24 15:43:22 | 只看該作者
The spectral geometry of the laplacian and the conformal laplacian for manifolds with boundary,th Dirichlet and Robin boundary conditions. We show in §1 geometric properties of the boundary such as totally geodesic boundary, constant mean curvature, and totally umbillic are spectrally determined. In §2, we expand the invariants of the heat equation on a small geodesic ball in a power series i
19#
發(fā)表于 2025-3-24 20:19:41 | 只看該作者
20#
發(fā)表于 2025-3-25 02:34:43 | 只看該作者
Going Whaling and a Hint of Ahab,n the radius. We characterize Einstein, conformally flat, and constant sectional curvature manifolds by the spectral geometry of their geodesic balls. Also, some characterizations are obtained for the rank 1 symmetric spaces .., .., .., .. and their noncompact duals. MOS subject classification: 58G25
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 06:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
长乐市| 阿城市| 阳曲县| 呼和浩特市| 沈阳市| 五莲县| 横山县| 定陶县| 区。| 米脂县| 平陆县| 中山市| 香港 | 灌云县| 勃利县| 乡宁县| 民勤县| 宿州市| 基隆市| 秭归县| 镇安县| 鄂伦春自治旗| 清涧县| 普兰店市| 敦煌市| 惠来县| 宁陕县| 平定县| 方城县| 榕江县| 彭阳县| 赤壁市| 剑河县| 罗山县| 宜阳县| 宝兴县| 城口县| 凤翔县| 裕民县| 深泽县| 林甸县|