找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Global Aspects of Classical Integrable Systems; Richard H. Cushman,Larry M. Bates Book 19971st edition Springer Basel AG 1997 algebra.clas

[復(fù)制鏈接]
樓主: 烤問(wèn)
11#
發(fā)表于 2025-3-23 11:03:22 | 只看該作者
12#
發(fā)表于 2025-3-23 16:03:28 | 只看該作者
The harmonic oscillator,Physically, the harmonic oscillator in the plane is described by a particle of unit mass acted upon by two linear springs of unit spring constant: one spring acting in the . -direction and the other in the .-direction.
13#
發(fā)表于 2025-3-23 21:28:26 | 只看該作者
The Euler Top,Mathematically, the motion of the Euler top is described by geodesics of a left invariant metric on the rotation group SO(3). Physically, the Euler top is a rigid body moving about its center of mass (which is fixed) without any forces acting on the body.
14#
發(fā)表于 2025-3-24 00:11:59 | 只看該作者
15#
發(fā)表于 2025-3-24 03:58:27 | 只看該作者
16#
發(fā)表于 2025-3-24 09:42:35 | 只看該作者
Human Rights and Free Trade in Mexicolyze. From the qualitative description of the reduced system we obtain a complete qualitative picture of the motion of the spherical pendulum. Because of monodromy, the Liouville tori fit together in a nontrivial way. This precludes the existence of global action coordinates, (see appendix D section 2).
17#
發(fā)表于 2025-3-24 11:18:44 | 只看該作者
The spherical pendulum,lyze. From the qualitative description of the reduced system we obtain a complete qualitative picture of the motion of the spherical pendulum. Because of monodromy, the Liouville tori fit together in a nontrivial way. This precludes the existence of global action coordinates, (see appendix D section 2).
18#
發(fā)表于 2025-3-24 18:03:50 | 只看該作者
Euler top, the spherical pendulum and the Lagrange top. These classical integrable Hamiltonian systems one sees treated in almost every physics book on classical mechanics. So why is this book necessary? The answer is that the standard treatments are not complete. For instance in physics books one c
19#
發(fā)表于 2025-3-24 19:41:17 | 只看該作者
20#
發(fā)表于 2025-3-25 01:29:41 | 只看該作者
is that their basic tool for removing symmetries of Hamiltonian systems, called regular reduction, is not general enough to handle removal of the symmetries which occur in the spherical pendulum or in the Lagrange top. For these symmetries one needs singular reduction. Another reason is that the obstructions 978-3-0348-9817-1978-3-0348-8891-2
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 13:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
斗六市| 长子县| 商都县| 武隆县| 吉林省| 启东市| 若羌县| 江达县| 阳西县| 黑水县| 建始县| 五常市| 沿河| 施秉县| 垫江县| 无锡市| 乌兰浩特市| 麻江县| 桐城市| 社会| 濮阳市| 稷山县| 淄博市| 吉隆县| 黄冈市| 图木舒克市| 江油市| 阿拉善盟| 博乐市| 栾川县| 华坪县| 朔州市| 连江县| 惠州市| 内丘县| 兴化市| 德格县| 托里县| 沽源县| 黄骅市| 论坛|