找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Global Analysis on Foliated Spaces; Calvin C. Moore,Claude Schochet Book 1988 Springer-Verlag New York Inc. 1988 Characteristic class.coho

[復(fù)制鏈接]
樓主: Weber-test
21#
發(fā)表于 2025-3-25 03:20:27 | 只看該作者
22#
發(fā)表于 2025-3-25 11:03:13 | 只看該作者
23#
發(fā)表于 2025-3-25 14:30:20 | 只看該作者
Operator Algebras,es as described in Chapter IV. For the moment we do not need to assume that the groupoid has discrete holonomy groups as in Chapter IV, but all the examples and all the applications will satisfy this condition. If in addition the support of the measure λ. is equal to r .(x), as is usual in our examples, then λ is called a Haar system.
24#
發(fā)表于 2025-3-25 19:17:18 | 只看該作者
25#
發(fā)表于 2025-3-25 21:08:06 | 只看該作者
Diagnosis and Treatment of Survivor Guilt solutions of elliptic systems of partial differential equations in terms of the Fredholm index of the associated elliptic operator and characteristic differential forms which are related to global topological properties of the manifold.
26#
發(fā)表于 2025-3-26 02:18:44 | 只看該作者
Introduction, solutions of elliptic systems of partial differential equations in terms of the Fredholm index of the associated elliptic operator and characteristic differential forms which are related to global topological properties of the manifold.
27#
發(fā)表于 2025-3-26 07:44:01 | 只看該作者
28#
發(fā)表于 2025-3-26 11:17:47 | 只看該作者
https://doi.org/10.1007/978-1-4615-6303-7y finite dimensional subspaces relative to an abelian von Neumann algebra α. The underlying idea here is that certain operators, although not of trace class in the usual sense, are of trace class when suitably localized relative to α. The trace, or perhaps better, the . trace of such an operator is
29#
發(fā)表于 2025-3-26 14:26:20 | 只看該作者
https://doi.org/10.1007/978-3-658-18286-1 these groups that invariants connected with the index theorem shall live. Similar groups have been considered before, for instance, by Kamber and Tondeur [KT2], Molino [Mol], Vaisman [V], Sarkarla [Sal], Heitsch [He], El Kacimi-Alaoui [El], and Haefliger [Hae3] (whose work we discuss at the end of
30#
發(fā)表于 2025-3-26 17:54:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 06:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
瑞丽市| 会泽县| 武乡县| 华宁县| 莒南县| 图木舒克市| 新沂市| 德保县| 格尔木市| 酒泉市| 漳州市| 大余县| 桐城市| 平舆县| 讷河市| 乌兰县| 蒲江县| 兴城市| 玛曲县| 漳平市| 琼中| 平南县| 鄂州市| 曲沃县| 扎兰屯市| 金昌市| 东平县| 左权县| 石泉县| 嘉善县| 绥江县| 巴彦县| 平南县| 广东省| 囊谦县| 台中县| 建瓯市| 遂平县| 高要市| 鹤壁市| 宝坻区|