找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Global Analysis on Foliated Spaces; Calvin C. Moore,Claude Schochet Book 1988 Springer-Verlag New York Inc. 1988 Characteristic class.coho

[復(fù)制鏈接]
查看: 48531|回復(fù): 42
樓主
發(fā)表于 2025-3-21 19:10:00 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Global Analysis on Foliated Spaces
編輯Calvin C. Moore,Claude Schochet
視頻videohttp://file.papertrans.cn/387/386012/386012.mp4
叢書名稱Mathematical Sciences Research Institute Publications
圖書封面Titlebook: Global Analysis on Foliated Spaces;  Calvin C. Moore,Claude Schochet Book 1988 Springer-Verlag New York Inc. 1988 Characteristic class.coho
描述Global analysis has as its primary focus the interplay between the local analysis and the global geometry and topology of a manifold. This is seen classicallv in the Gauss-Bonnet theorem and its generalizations. which culminate in the Ativah-Singer Index Theorem [ASI] which places constraints on the solutions of elliptic systems of partial differential equations in terms of the Fredholm index of the associated elliptic operator and characteristic differential forms which are related to global topologie al properties of the manifold. The Ativah-Singer Index Theorem has been generalized in several directions. notably by Atiyah-Singer to an index theorem for families [AS4]. The typical setting here is given by a family of elliptic operators (Pb) on the total space of a fibre bundle P = F_M_B. where is defined the Hilbert space on Pb 2 L 1p -llbl.dvollFll. In this case there is an abstract index class indlPI E ROIBI. Once the problem is properly formulated it turns out that no further deep analvtic information is needed in order to identify the class. These theorems and their equivariant counterparts have been enormously useful in topology. geometry. physics. and in representation theo
出版日期Book 1988
關(guān)鍵詞Characteristic class; cohomology; geometry; homology; operator algebra
版次1
doihttps://doi.org/10.1007/978-1-4613-9592-8
isbn_softcover978-1-4613-9594-2
isbn_ebook978-1-4613-9592-8Series ISSN 0940-4740
issn_series 0940-4740
copyrightSpringer-Verlag New York Inc. 1988
The information of publication is updating

書目名稱Global Analysis on Foliated Spaces影響因子(影響力)




書目名稱Global Analysis on Foliated Spaces影響因子(影響力)學(xué)科排名




書目名稱Global Analysis on Foliated Spaces網(wǎng)絡(luò)公開度




書目名稱Global Analysis on Foliated Spaces網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Global Analysis on Foliated Spaces被引頻次




書目名稱Global Analysis on Foliated Spaces被引頻次學(xué)科排名




書目名稱Global Analysis on Foliated Spaces年度引用




書目名稱Global Analysis on Foliated Spaces年度引用學(xué)科排名




書目名稱Global Analysis on Foliated Spaces讀者反饋




書目名稱Global Analysis on Foliated Spaces讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:31:13 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:05:43 | 只看該作者
地板
發(fā)表于 2025-3-22 08:29:13 | 只看該作者
5#
發(fā)表于 2025-3-22 12:14:28 | 只看該作者
6#
發(fā)表于 2025-3-22 14:07:36 | 只看該作者
7#
發(fā)表于 2025-3-22 18:41:55 | 只看該作者
0940-4740 to identify the class. These theorems and their equivariant counterparts have been enormously useful in topology. geometry. physics. and in representation theo978-1-4613-9594-2978-1-4613-9592-8Series ISSN 0940-4740
8#
發(fā)表于 2025-3-22 23:31:30 | 只看該作者
978-1-4613-9594-2Springer-Verlag New York Inc. 1988
9#
發(fā)表于 2025-3-23 03:38:55 | 只看該作者
Global Analysis on Foliated Spaces978-1-4613-9592-8Series ISSN 0940-4740
10#
發(fā)表于 2025-3-23 07:34:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 03:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳泉市| 合水县| 安多县| 武邑县| 连江县| 福建省| 娱乐| 平原县| 浮山县| 边坝县| 南投市| 青海省| 定州市| 南溪县| 肥乡县| 德江县| 闽清县| 钦州市| 松阳县| 遵化市| 卓尼县| 和龙市| 曲水县| 宁国市| 灵石县| 云安县| 兴隆县| 垦利县| 香河县| 辽宁省| 宁德市| 宾阳县| 宝鸡市| 泽普县| 彩票| 东乌珠穆沁旗| 东海县| 新密市| 偃师市| 古丈县| 阳泉市|