找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Glide-Symmetric Z2 Magnetic Topological Crystalline Insulators; Heejae Kim Book 2022 The Editor(s) (if applicable) and The Author(s), unde

[復(fù)制鏈接]
樓主: 面臨
11#
發(fā)表于 2025-3-23 13:28:46 | 只看該作者
Interplay of Glide-Symmetric , Magnetic Topological Crystalline Insulators and Symmetry: Inversion number associated with the normal vector of the glide plane, and they are expressed in terms of integrals of the Berry curvature. In the present chapter, we study the fate of this topological invariant when inversion symmetry is added while time-reversal symmetry (TRS) is not enforced.
12#
發(fā)表于 2025-3-23 15:35:47 | 只看該作者
13#
發(fā)表于 2025-3-23 18:53:49 | 只看該作者
Conclusion and Outlook,gical phase transition, new formulas of the glide-. topological invariant in the presence of inversion symmetry from both approaches in .-space and real-space, and a manipulation for such glide-symmetric . magnetic topological phase.
14#
發(fā)表于 2025-3-23 23:44:44 | 只看該作者
https://doi.org/10.1007/978-981-16-9077-8Topological Crystalline Insulator; Topological Magnetic Photonic Crystal by Glide Symmetry; Weyl Semim
15#
發(fā)表于 2025-3-24 05:46:17 | 只看該作者
978-981-16-9079-2The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
16#
發(fā)表于 2025-3-24 09:28:36 | 只看該作者
17#
發(fā)表于 2025-3-24 13:05:14 | 只看該作者
18#
發(fā)表于 2025-3-24 16:12:07 | 只看該作者
19#
發(fā)表于 2025-3-24 21:10:43 | 只看該作者
20#
發(fā)表于 2025-3-25 00:01:41 | 只看該作者
Interplay of Glide-Symmetric , Magnetic Topological Crystalline Insulators and Symmetry: Inversion number associated with the normal vector of the glide plane, and they are expressed in terms of integrals of the Berry curvature. In the present chapter, we study the fate of this topological invariant when inversion symmetry is added while time-reversal symmetry (TRS) is not enforced.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 09:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新巴尔虎右旗| 安新县| 五台县| 东乌| 丘北县| 齐齐哈尔市| 尖扎县| 县级市| 贵阳市| 商水县| 方山县| 武功县| 夏邑县| 满城县| 武陟县| 大城县| 苗栗市| 高唐县| 喀喇| 温宿县| 漳浦县| 博湖县| 安阳市| 新兴县| 扎赉特旗| 通江县| 本溪| 陵水| 建湖县| 洪湖市| 昭平县| 普安县| 离岛区| 津南区| 宣化县| 福海县| 博客| 维西| 高陵县| 鲜城| 稷山县|