找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Ginzburg-Landau Vortices; Fabrice Bethuel,Ha?m Brezis,Frédéric Hélein Book 1994 Birkh?user Boston 1994 Boundary value problem.Topology.equ

[復(fù)制鏈接]
樓主: 恐怖
11#
發(fā)表于 2025-3-23 13:09:56 | 只看該作者
12#
發(fā)表于 2025-3-23 14:58:14 | 只看該作者
13#
發(fā)表于 2025-3-23 18:21:14 | 只看該作者
Vorausberechnung der Lage von Gestirnen,Throughout this chapter, we analyze the behavior as . of solutions v. of the Ginzburg-Landau equation: ., ..
14#
發(fā)表于 2025-3-24 00:00:25 | 只看該作者
https://doi.org/10.1007/978-3-7091-7885-0Assume . is simply connected but not starshaped. Do the conclusions of Theorems 0.1, 0.2, 0.3, 0.5 and 0.6 still remain valid?
15#
發(fā)表于 2025-3-24 03:29:33 | 只看該作者
Energy estimates for S1-valued maps,Let . be a smooth, bounded and simply connected domain in ?., and let ω. for . = 1,..., ., be open, smooth and simply connected subsets of ., with . and..Let . Consider the class of maps . where . are given and ..
16#
發(fā)表于 2025-3-24 08:15:17 | 只看該作者
A lower bound for the energy of S1-valued maps on perforated domains,Let . be a smooth, bounded and connected domain. Let .,.,...,. be . points in .. Let . be a positive number and set
17#
發(fā)表于 2025-3-24 13:50:57 | 只看該作者
18#
發(fā)表于 2025-3-24 16:19:05 | 只看該作者
19#
發(fā)表于 2025-3-24 20:25:44 | 只看該作者
converges: , is born!,To summarize the result of Chapter V we have now found a subsequence (u. and a finite set (.) in. of. we have..
20#
發(fā)表于 2025-3-24 23:34:00 | 只看該作者
coincides with THE canonical harmonic map having singularities (,),In Section I.3 we have introduced the notion of a canonical harmonic map associated to given singularities with prescribed degrees. We shall only consider the case of prescribed degrees +1. We recall its main properties. Given . points .,.,…, . in ., let . be the class of all smooth harmonic maps from G{a.,a.,…,a.} into . such that
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 22:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武城县| 林芝县| 定结县| 张家口市| 富平县| 大姚县| 宁都县| 松江区| 沿河| 青海省| 靖西县| 旬邑县| 大竹县| 宜春市| 洪洞县| 安图县| 紫金县| 邯郸市| 六枝特区| 疏勒县| 合作市| 纳雍县| 福清市| 陵川县| 丰县| 噶尔县| 安徽省| 岗巴县| 抚松县| 东海县| 东乌珠穆沁旗| 延寿县| 华坪县| 当涂县| 聂拉木县| 临夏市| 沙坪坝区| 安远县| 巴塘县| 彰武县| 武川县|