找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geospatial Algebraic Computations; Theory and Applicati Joseph L. Awange,Béla Paláncz Book 2016Latest edition Springer-Verlag Berlin Heidel

[復(fù)制鏈接]
樓主: MOURN
11#
發(fā)表于 2025-3-23 10:11:01 | 只看該作者
12#
發(fā)表于 2025-3-23 16:20:51 | 只看該作者
Positioning by Resection Methodsechnique which uses direction measurements as opposed to distances is presented. This positioning approach is known as the resection. Unlike in ranging where measured distances are affected by atmospheric refraction, resection methods have the advantage that the measurements are angles or directions which are not affected by refraction.
13#
發(fā)表于 2025-3-23 18:34:37 | 只看該作者
https://doi.org/10.1007/978-3-319-25465-4Algebraic symbolic-numeric methods; Geodetic computation; Nonlinear equations; Robust estimation; Symbol
14#
發(fā)表于 2025-3-24 02:00:16 | 只看該作者
15#
發(fā)表于 2025-3-24 04:36:27 | 只看該作者
https://doi.org/10.1007/978-3-540-76435-9e augmented with examples from the two fields. Ring theory forms the basis upon which polynomial rings operate. As we shall see later, exact solution of algebraic nonlinear systems of equations are pinned to the operations on polynomial rings. In Chap.?., polynomials will be discussed in detail. In
16#
發(fā)表于 2025-3-24 06:34:05 | 只看該作者
https://doi.org/10.1007/978-1-4419-6247-8he observations are not of polynomial type, as exemplified by the GPS meteorology problem of Chap.?., they are converted into polynomials. The unknown parameters are then be obtained by solving the resulting polynomial equations. Such solutions are only possible through application of operations add
17#
發(fā)表于 2025-3-24 13:03:36 | 只看該作者
Encyclopedic Dictionary of Polymersapter), for solving algebraic nonlinear systems of equations which you may encounter. The basic tools that you will require to develop your own algorithms for solving problems requiring closed form (exact) solutions are presented. This powerful tool is the “Gr?bner basis” written in English as Groeb
18#
發(fā)表于 2025-3-24 17:32:45 | 只看該作者
https://doi.org/10.1007/3-540-30683-8 resultants approaches. While Groebner basis may require large storage capacity during its computations, polynomial resultants approaches presented herein offers remedy to users who may not be lucky to have computers with large storage capacities. This chapter presents polynomial resultants approach
19#
發(fā)表于 2025-3-24 19:44:52 | 只看該作者
20#
發(fā)表于 2025-3-25 01:01:13 | 只看該作者
https://doi.org/10.1007/3-540-29832-0e measurements than it is necessary to determine unknown variables, consequently the number of the variables . is less then the number of the equations .. Mathematically, a solution for such systems can exist in a least square sense. There are many techniques to handle such problems, e.g.,:
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 09:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金乡县| 河源市| 汶川县| 江山市| 明溪县| 游戏| 昂仁县| 长兴县| 陵水| 沧源| 克什克腾旗| 察雅县| 淮滨县| 公主岭市| 紫阳县| 武邑县| 大丰市| 宁陵县| 新丰县| 卢龙县| 稷山县| 奉贤区| 社旗县| 山西省| 德格县| 栖霞市| 松溪县| 凌海市| 西和县| 大洼县| 平罗县| 和林格尔县| 万全县| 晋城| 桃园市| 密云县| 巴彦县| 黑龙江省| 崇明县| 两当县| 南阳市|