找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geomorphic Risk Reduction Using Geospatial Methods and Tools; Raju Sarkar,Sunil Saha,Rajib Shaw Book 2024 The Editor(s) (if applicable) an

[復(fù)制鏈接]
樓主: malignant
41#
發(fā)表于 2025-3-28 17:24:22 | 只看該作者
42#
發(fā)表于 2025-3-28 21:30:52 | 只看該作者
43#
發(fā)表于 2025-3-29 00:39:02 | 只看該作者
44#
發(fā)表于 2025-3-29 04:31:43 | 只看該作者
45#
發(fā)表于 2025-3-29 08:42:59 | 只看該作者
Introduction to the Finite Element Method, deposition of sediments. People in Manikchak, Kaliachak-II, and Kaliachak-III blocks of Malda district West Bengal were highly affected due to this river shifting in the lower course of the Ganga River. A few portions of the Rajmahal block of Jharkhand, located on the right side of the river are also affected.
46#
發(fā)表于 2025-3-29 14:28:32 | 只看該作者
47#
發(fā)表于 2025-3-29 18:59:18 | 只看該作者
Landslide Susceptibility Assessment Based on Machine Learning Techniquese datasets were recommended. A total of 9 machine learning methods applied in LSA were simply introduced. The advantages and future work of LSA based on machine learning techniques were summarized from the aspects of scale, performance, modeling, and interpretability.
48#
發(fā)表于 2025-3-29 22:55:56 | 只看該作者
49#
發(fā)表于 2025-3-30 02:40:52 | 只看該作者
The Adoption of Random Forest (RF) and Support Vector Machine (SVM) with Cat Swarm Optimization (CSOs that would be used for both training and testing by using a random sampling technique. This allowed us to have complete control over the models. It was discovered that CSO not only improved the fitting of the model and the quality of the results, but it also speed up the procedure.
50#
發(fā)表于 2025-3-30 05:44:02 | 只看該作者
Book 2024itional statistical methods and advanced machine learning methods and addresses the different ways to reduce the impact of geomorphic hazards..In recent years with the development of human infrastructures, geomorphic hazards are gradually increasing, which include landslides, flood and soil erosion,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 13:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
肥西县| 万源市| 哈巴河县| 定襄县| 前郭尔| 龙井市| 永胜县| 叶城县| 渑池县| 乐平市| 花垣县| 澳门| 武汉市| 鸡西市| 西充县| 彭阳县| 霍州市| 临湘市| 克拉玛依市| 珲春市| 贵南县| 建昌县| 花垣县| 建水县| 汉中市| 清河县| 余干县| 曲水县| 禄劝| 乌什县| 民和| 望江县| 长丰县| 阿城市| 乐清市| 大石桥市| 肥城市| 万山特区| 麦盖提县| 安国市| 亚东县|