找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry, Lie Theory and Applications; The Abel Symposium 2 Sigbj?rn Hervik,Boris Kruglikov,Dennis The Conference proceedings 2022 The Edit

[復(fù)制鏈接]
樓主: proptosis
21#
發(fā)表于 2025-3-25 03:21:07 | 只看該作者
22#
發(fā)表于 2025-3-25 11:25:49 | 只看該作者
https://doi.org/10.1007/978-3-642-82930-7y affine geodesic but one closes smoothly (the exceptional geodesic is said to be alienated as it does not return). We exhibit an affine structure on the cylinder which is almost Zoll. This structure is geodesically complete, affine Killing complete, and affine symmetric.
23#
發(fā)表于 2025-3-25 14:13:57 | 只看該作者
24#
發(fā)表于 2025-3-25 19:02:43 | 只看該作者
25#
發(fā)表于 2025-3-25 22:14:53 | 只看該作者
https://doi.org/10.1007/978-3-662-36773-5omorphism type. When . is a subadjoint variety, the associated contact G-structure is a parabolic contact structure, for which we have the theory of Tanaka connection. We study the case when . is not a subadjoint variety and show that the canonical distribution on the associated contact G-structure
26#
發(fā)表于 2025-3-26 02:54:30 | 只看該作者
27#
發(fā)表于 2025-3-26 07:46:29 | 只看該作者
https://doi.org/10.1007/978-3-662-28803-0 conjectures in the solvable case. We also introduce an open and convex cone . of derivations attached to each nilpotent Lie algebra ., which is defined as the image of a moment map and parametrizes a set of solvable Lie algebras with nilradical . admitting Ricci negative metrics.
28#
發(fā)表于 2025-3-26 11:23:02 | 只看該作者
29#
發(fā)表于 2025-3-26 14:05:09 | 只看該作者
30#
發(fā)表于 2025-3-26 17:02:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 07:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乐都县| 防城港市| 新和县| 遂平县| 峡江县| 玛多县| 南涧| 辰溪县| 弋阳县| 溆浦县| 辽中县| 宁波市| 醴陵市| 伊宁县| 长顺县| 晋州市| 綦江县| 宜城市| 双柏县| 淮南市| 和龙市| 鹿邑县| 龙州县| 广平县| 望都县| 曲周县| 眉山市| 天门市| 乌鲁木齐市| 成安县| 天峨县| 庆城县| 隆回县| 芒康县| 沙湾县| 枣阳市| 谢通门县| 威远县| 嵩明县| 岳西县| 靖安县|