找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Submanifolds and Applications; Bang-Yen Chen,Majid Ali Choudhary,Mohammad Nazrul Book 2024 The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: Encounter
41#
發(fā)表于 2025-3-28 15:26:41 | 只看該作者
42#
發(fā)表于 2025-3-28 21:29:44 | 只看該作者
43#
發(fā)表于 2025-3-29 01:00:39 | 只看該作者
,Conformal ,-Ricci-Yamabe Solitons in?the?Framework of?Riemannian Manifolds, gradient CERYS . is an Einstein manifold and the gradient of smooth function . is a constant multiple of .. A non-trivial example of an . equipped with a semi-symmetric metric .-connection is constructed, and hence verify some of our results.
44#
發(fā)表于 2025-3-29 04:32:15 | 只看該作者
45#
發(fā)表于 2025-3-29 08:03:36 | 只看該作者
,The Darboux Mate and?the?Higher Order Curvatures of?Spherical Legendre Curves,, where . is the classical curvature function of .. Several examples are discussed, some of them in relationship with the usual theory of regular space curves. The case of Lorentz–Minkowski sphere . is sketched only from the point of view of the geodesic curvature.
46#
發(fā)表于 2025-3-29 11:40:44 | 只看該作者
47#
發(fā)表于 2025-3-29 16:23:29 | 只看該作者
,Solitons in?,-Gravity,ent Yamabe solitons, .-Ricci and gradient .-Ricci solitons are its metrics. We establish criteria for which Ricci solitons are steady, expanding, or shrinking. Moreover, we study gradient Ricci solitons and prove that either the perfect fluid spacetime represents the dark energy era, or the spacetim
48#
發(fā)表于 2025-3-29 22:27:54 | 只看該作者
,A Survey on?Lagrangian Submanifolds of?Nearly Kaehler Six-Sphere,rvey of results on Lagrangian submanifolds . of the nearly K?hler . in terms of a canonically induced almost contact metric structure, Chen’s equality, normal connection, normal curvature operator, Ricci tensor and conformal flatness. In particular, conditions for . to be Sasakian and totally geodes
49#
發(fā)表于 2025-3-30 01:15:13 | 只看該作者
Pythagorean Submanifolds,odels of real space forms. They are defined by an equation based on the shape operator. We give several examples and observe that any Pythagorean submanifold is isoparametric where the principal curvatures are given in terms of the Golden ratio. We also classify Pythagorean hypersurfaces.
50#
發(fā)表于 2025-3-30 05:29:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 05:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
遵义县| 崇礼县| 乌海市| 石首市| 通城县| 揭东县| 湘乡市| 崇明县| 娄底市| 杨浦区| 防城港市| 东乡族自治县| 东丽区| 宾川县| 新余市| 从化市| 乌苏市| 泗阳县| 大新县| 禄丰县| 金寨县| 静宁县| 绥中县| 新干县| 德化县| 桐柏县| 洱源县| 大关县| 镇原县| 呼图壁县| 宜春市| 淅川县| 德清县| 确山县| 安陆市| 泸溪县| 卫辉市| 甘谷县| 泾源县| 乌苏市| 江门市|