找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Subanalytic and Semialgebraic Sets; Masahiro Shiota Book 1997 Springer Science+Business Media New York 1997 Finite.algebra.ana

[復制鏈接]
查看: 15687|回復: 35
樓主
發(fā)表于 2025-3-21 17:06:04 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometry of Subanalytic and Semialgebraic Sets
編輯Masahiro Shiota
視頻videohttp://file.papertrans.cn/384/383828/383828.mp4
叢書名稱Progress in Mathematics
圖書封面Titlebook: Geometry of Subanalytic and Semialgebraic Sets;  Masahiro Shiota Book 1997 Springer Science+Business Media New York 1997 Finite.algebra.ana
描述Real analytic sets in Euclidean space (Le. , sets defined locally at each point of Euclidean space by the vanishing of an analytic function) were first investigated in the 1950‘s by H. Cartan [Car], H. Whitney [WI-3], F. Bruhat [W-B] and others. Their approach was to derive information about real analytic sets from properties of their complexifications. After some basic geometrical and topological facts were established, however, the study of real analytic sets stagnated. This contrasted the rapid develop- ment of complex analytic geometry which followed the groundbreaking work of the early 1950‘s. Certain pathologies in the real case contributed to this failure to progress. For example, the closure of -or the connected components of-a constructible set (Le. , a locally finite union of differ- ences of real analytic sets) need not be constructible (e. g. , R - {O} and 3 2 2 { (x, y, z) E R : x = zy2, x + y2 -=I- O}, respectively). Responding to this in the 1960‘s, R. Thorn [Thl], S. Lojasiewicz [LI,2] and others undertook the study of a larger class of sets, the semianalytic sets, which are the sets defined locally at each point of Euclidean space by a finite number of ana- lytic f
出版日期Book 1997
關鍵詞Finite; algebra; analytic function; analytic geometry; class; form; function; geometry; information; pdc; proo
版次1
doihttps://doi.org/10.1007/978-1-4612-2008-4
isbn_softcover978-1-4612-7378-3
isbn_ebook978-1-4612-2008-4Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Science+Business Media New York 1997
The information of publication is updating

書目名稱Geometry of Subanalytic and Semialgebraic Sets影響因子(影響力)




書目名稱Geometry of Subanalytic and Semialgebraic Sets影響因子(影響力)學科排名




書目名稱Geometry of Subanalytic and Semialgebraic Sets網(wǎng)絡公開度




書目名稱Geometry of Subanalytic and Semialgebraic Sets網(wǎng)絡公開度學科排名




書目名稱Geometry of Subanalytic and Semialgebraic Sets被引頻次




書目名稱Geometry of Subanalytic and Semialgebraic Sets被引頻次學科排名




書目名稱Geometry of Subanalytic and Semialgebraic Sets年度引用




書目名稱Geometry of Subanalytic and Semialgebraic Sets年度引用學科排名




書目名稱Geometry of Subanalytic and Semialgebraic Sets讀者反饋




書目名稱Geometry of Subanalytic and Semialgebraic Sets讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:15:45 | 只看該作者
Einkauf und Einsatz von Unternehmenssoftwaretheorems in Chapter III are stated in a more general situation than X. The X-versions of the results of this section and Chapter III, except 1.1.6 and 1.1.7, can be proved without the method of integration. Note that the X-versions work in the . category, r a positive integer (see Chapter II).
板凳
發(fā)表于 2025-3-22 00:39:07 | 只看該作者
地板
發(fā)表于 2025-3-22 04:36:50 | 只看該作者
5#
發(fā)表于 2025-3-22 09:04:24 | 只看該作者
Triangulations of X-Maps, X-. of an X-set in a Euclidean space. Here note that the stratification is finite locally at each point of the Euclidean space and each stratum is not only an X-set and a . manifold but also a . X-submanifold of the Euclidean space (i.e., locally X-homeomorphic to a Euclidean space).
6#
發(fā)表于 2025-3-22 15:10:23 | 只看該作者
7#
發(fā)表于 2025-3-22 18:23:31 | 只看該作者
8#
發(fā)表于 2025-3-22 21:41:22 | 只看該作者
9#
發(fā)表于 2025-3-23 05:25:05 | 只看該作者
10#
發(fā)表于 2025-3-23 09:35:23 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 16:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
东城区| 巫山县| 德令哈市| 江都市| 昌图县| 农安县| 文化| 镇巴县| 盐源县| 新蔡县| 千阳县| 鄂州市| 汶上县| 广西| 临高县| 句容市| 阜城县| 汉寿县| 武威市| 新巴尔虎左旗| 江达县| 蛟河市| 九江县| 沙洋县| 武冈市| 团风县| 夏邑县| 湖北省| 临猗县| 岳普湖县| 英德市| 高淳县| 固安县| 忻州市| 中方县| 大丰市| 通河县| SHOW| 民丰县| 元江| 兴海县|