找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of State Spaces of Operator Algebras; Erik M. Alfsen,Frederic W. Shultz Textbook 2003 Springer Science+Business Media New York 20

[復制鏈接]
查看: 54986|回復: 47
樓主
發(fā)表于 2025-3-21 16:09:27 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometry of State Spaces of Operator Algebras
編輯Erik M. Alfsen,Frederic W. Shultz
視頻videohttp://file.papertrans.cn/384/383827/383827.mp4
概述Gives a quick introduction to Jordan algebras; no previous knowledge is assumed and all necessary background on the subject is given.A discussion of dynamical correspondences, which tie together Lie a
叢書名稱Mathematics: Theory & Applications
圖書封面Titlebook: Geometry of State Spaces of Operator Algebras;  Erik M. Alfsen,Frederic W. Shultz Textbook 2003 Springer Science+Business Media New York 20
描述In this book we give a complete geometric description of state spaces of operator algebras, Jordan as well as associative. That is, we give axiomatic characterizations of those convex sets that are state spaces of C*-algebras and von Neumann algebras, together with such characterizations for the normed Jordan algebras called JB-algebras and JBW-algebras. These non- associative algebras generalize C*-algebras and von Neumann algebras re- spectively, and the characterization of their state spaces is not only of interest in itself, but is also an important intermediate step towards the characterization of the state spaces of the associative algebras. This book gives a complete and updated presentation of the character- ization theorems of [10]‘ [11] and [71]. Our previous book State spaces of operator algebras: basic theory, orientations and C*-products, referenced as [AS] in the sequel, gives an account of the necessary prerequisites on C*-algebras and von Neumann algebras, as well as a discussion of the key notion of orientations of state spaces. For the convenience of the reader, we have summarized these prerequisites in an appendix which contains all relevant definitions and resul
出版日期Textbook 2003
關鍵詞Algebra; applications mathematics; functional analysis; knot theory; manifolds; mathematical physics; oper
版次1
doihttps://doi.org/10.1007/978-1-4612-0019-2
isbn_softcover978-1-4612-6575-7
isbn_ebook978-1-4612-0019-2
copyrightSpringer Science+Business Media New York 2003
The information of publication is updating

書目名稱Geometry of State Spaces of Operator Algebras影響因子(影響力)




書目名稱Geometry of State Spaces of Operator Algebras影響因子(影響力)學科排名




書目名稱Geometry of State Spaces of Operator Algebras網(wǎng)絡公開度




書目名稱Geometry of State Spaces of Operator Algebras網(wǎng)絡公開度學科排名




書目名稱Geometry of State Spaces of Operator Algebras被引頻次




書目名稱Geometry of State Spaces of Operator Algebras被引頻次學科排名




書目名稱Geometry of State Spaces of Operator Algebras年度引用




書目名稱Geometry of State Spaces of Operator Algebras年度引用學科排名




書目名稱Geometry of State Spaces of Operator Algebras讀者反饋




書目名稱Geometry of State Spaces of Operator Algebras讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:49:36 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:38:10 | 只看該作者
Structure of JBW-algebrasay–von Neumann equivalence of projections in von Neumann algebras.) We will define the notion of type I and type I.JBW-algebras, and describe the classification of type I.JBW-factors. (For the sake of brevity, most of these results will be stated without proof, with references given to [67].) Finall
地板
發(fā)表于 2025-3-22 05:40:38 | 只看該作者
Representations of JB-algebrasat there is one crucial difference compared to the situation for C*- algebras: not every JB-algebra admits such a concrete representation. The “Gelfand–Naimark” type theorem (Theorem 4.19) states that there is a certain exceptional ideal, and modulo that ideal every JB-algebra admits a concrete repr
5#
發(fā)表于 2025-3-22 08:42:45 | 只看該作者
Dynamical Correspondencesespondence of observables and generators of one-parameter groups of automorphisms in quantum mechanics. It is closely related to Connes’ concept of orientation [36, Definition 4.11] that he used as a key property in his characterization of the natural self-dual cones associated with von Neumann alge
6#
發(fā)表于 2025-3-22 15:36:12 | 只看該作者
General Compressions be strengthened to characterize the state spaces of Jordan and C.-algebras. The first part of this program is to establish a satisfactory spectral theory and functional calculus. Here the guiding idea is to replace projections.by “projective units”.P1 determined by “general compressions”.defined by
7#
發(fā)表于 2025-3-22 21:00:57 | 只看該作者
8#
發(fā)表于 2025-3-22 21:56:15 | 只看該作者
Characterization of Normal State Spaces of von Neumann Algebrasl state spaces of JBW-factors of type I by geometric axioms, among those the Hilbert ball property by which the face generated by each pair of extreme points is a Hilbert ball. In the case of.these balls will be 3-dimensional (A 120), and this “3-ball property” is the single additional property we n
9#
發(fā)表于 2025-3-23 04:55:30 | 只看該作者
Characterization of C*-algebra State SpacesC.-algebras have an identity, but our characterization can easily be adapted for non-unital algebras). We will start with our previous charac-terization of state spaces of JB-algebras (Theorem 9.38). Then we will add two additional properties that characterize C.-state spaces among state spaces of J
10#
發(fā)表于 2025-3-23 06:28:39 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 18:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
清镇市| 丽江市| 东乌珠穆沁旗| 元谋县| 深圳市| 杨浦区| 桐乡市| 忻城县| 永寿县| 济宁市| 苍南县| 射洪县| 丰顺县| 潼关县| 盘山县| 仁化县| 永兴县| 加查县| 淮南市| 安龙县| 纳雍县| 合川市| 新蔡县| 湘阴县| 绥芬河市| 布尔津县| 苗栗市| 邛崃市| 墨脱县| 大悟县| 镇安县| 鄱阳县| 山阳县| 易门县| 华容县| 朔州市| 公主岭市| 汾阳市| 郎溪县| 五原县| 溆浦县|